Lecture Notes in Electrical Engineering 184

UmitY. Ogras - Radu Marculescu

Modeling,
Analysis and
Optimization of
Network-on-Chip
Communication
Architectures

@ Springer

Lecture Notes in Electrical Engineering

Volume 184

For further volumes:

k|

http://www.springer.com/series/7818

Umit Y. Ogras - Radu Marculescu

Modeling, Analysis
and Optimization
of Network-on-Chip
Communication

Architectures

Umit Y. Ogras Radu Marculescu

Intel Corporation Department of Electrical and Computer
Hillsboro, OR Engineering
USA Carnegie Mellon University
Pittsburgh, PA
USA
ISSN 1876-1100 ISSN 1876-1119 (electronic)
ISBN 978-94-007-3957-4 ISBN 978-94-007-3958-1 (eBook)

DOI 10.1007/978-94-007-3958-1
Springer Dordrecht Heidelberg New York London

Library of Congress Control Number: 2012956161

© Springer Science+Business Media New York 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Media (Www.springer.com)

Preface

This book is based on an exciting and intense period of collaboration while we
were trying to understand the fundamental aspects of communication-based design
of multiprocessor systems-on-chip (MPSoC). While the core material is largely
based on first author’s EDAA award winning Ph.D. thesis, the overall structure and
contents has been updated to reflect our deeper and broader understanding of the
role of the “network” in MPSoC design that only the intervening years and pro-
totyping experience made it possible.

In terms of contents, the book provides a system-level view on various modeling
and optimization issues for future MPSoCs. As such, it can be used as an advanced
introduction in the area of multicore design and optimization where communication
happens via the network-on-chip approach. At the same time, we hope to see this
book helping readers overcome the abundance of available information (not always
well structured) researchers face nowadays and stimulate new research in this
exciting area.

We would like to express our gratitude to many close collaborators and entities
that make this endeavor possible. First, we would like to thank our many col-
leagues at Carnegie Mellon University who directly influenced some of our ideas
and provided valuable feedback over the years. In particular, we thank
Drs. Jingcao Hu, Paul Bogdan, Hyung Gyu Lee, Chen-Ling Chou, Nicholas H.
Zamora, Jung-Chun Kao, Radu David of the System Level Design group and
Siddharth Garg, Natasa Miskov-Zivanov, Puru Choudhary and Prof. Diana
Marculescu of the Energy Aware Computing group, also Professors Rob A.
Rutenbar, Hui Zhang, and Shawn Blanton. In general, the CSSI environment at
CMU proved to be the true ‘home’ for many of our intellectual endeavors.

Outside CMU, we had great collaborators that make this adventure exciting. In
particular, we would like to acknowledge many discussions we had with
Professors Alberto Sangiovanni-Vincentelli and Jan Rabaey of UC Berkeley
during the GSRC years, as well as Li-Shiuan Peh of MIT, Natalie Enright-Jerger of
University of Toronto, Petru Eles of Linkoping University, Nachyuck Chang of
Seoul National University, Ran Ginosar of Technion, and Dr. Peter Feldmann
of IBM who_contributed to various stages of our research.

vi Preface

We have also received valuable feedback from our industrial mentors who
monitored this research and constantly interacted with us over the years. In par-
ticular, Drs. Mike Kishinevsky, Yatin Hoskoke, and Stefan Rusu of Intel Corp., as
well as Dr. Jim Holt from Freescale helped us shape some of our ideas and offered
valuable insight on many practical aspects of this work.

We acknowledge the generous support from the Semiconductor Research
Corporation, National Science Foundation, and Gigascale Systems Research Focus
Center, one of five research centers funded under the Focus Center Research
Program, that made this research possible.

Finally, we would like to thank our dear families (Rukiye, Osman, and Zeyneb
Ogras, Diana, Andrei, Victor, and Cristina Marculescu, as well as our parents and
families overseas) for unconditional love and support over the years. None of this
would have been possible and meaningful without them.

Contents

1 Imtroduction
1.1 Network-on-Chip Architectures.
1.2 Advantages of NoC Architectures
1.3 A Generic NoC Synthesis Flow.
1.4 NoC Design Space and State of the Art.
References

2 Literature Survey
2.1 Application Modeling and Optimization

for NoC Communicationc......
2.1.1 TrafficModels
2.1.2 Application Mapping.
2.1.3 Application Scheduling
2.2 Communication Paradigm.
2.2.1 PacketRouting...........
2.2.2 Switching Techniques
2.2.3 QoS and Congestion Control
2.24 Power and Thermal Management
2.2.5 Reliability and Fault Tolerance.
2.3 Communication Infrastructure.
2.3.1 Topology Design,
232 Router Design,
2.3.3 Network Channel Design.......................
2.3.4 Floorplanning and Layout Design.
2.3.5 Clocking and Power Distribution
2.4 NoC Evaluation and Validation.
2.4.1 Analysis and Simulation
2.5 Prototyping, Testing and Verification.
References

~N N W W= =

10
11
12
12
13
14
15
16
17
17
18
19
20
20
21
21
22
23

vii

http://dx.doi.org/10.1007/978-94-007-3958-1_1
http://dx.doi.org/10.1007/978-94-007-3958-1_1
http://dx.doi.org/10.1007/978-94-007-3958-1_1#Sec1
http://dx.doi.org/10.1007/978-94-007-3958-1_1#Sec1
http://dx.doi.org/10.1007/978-94-007-3958-1_1#Sec2
http://dx.doi.org/10.1007/978-94-007-3958-1_1#Sec2
http://dx.doi.org/10.1007/978-94-007-3958-1_1#Sec3
http://dx.doi.org/10.1007/978-94-007-3958-1_1#Sec3
http://dx.doi.org/10.1007/978-94-007-3958-1_1#Sec4
http://dx.doi.org/10.1007/978-94-007-3958-1_1#Sec4
http://dx.doi.org/10.1007/978-94-007-3958-1_1#Bib1
http://dx.doi.org/10.1007/978-94-007-3958-1_2
http://dx.doi.org/10.1007/978-94-007-3958-1_2
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec1
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec1
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec1
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec2
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec2
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec3
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec3
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec4
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec4
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec5
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec5
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec6
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec6
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec7
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec7
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec8
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec8
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec9
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec9
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec10
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec10
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec11
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec11
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec12
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec12
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec13
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec13
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec14
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec14
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec15
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec15
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec16
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec16
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec17
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec17
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec18
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec18
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec19
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Sec19
http://dx.doi.org/10.1007/978-94-007-3958-1_2#Bib1

viii Contents

3 Motivational Example: MPEG-2 Encoder Design
3.1 Overall Approach
3.2 Evaluation of the NoC Architecture.

32.1 AreaEvaluation
3.2.2 Performance Evaluation.
3.2.3 Energy Consumption Evaluation.
3.3 Overall Comparison.vv vttt e
References e

4 Target NoC Platform.
4.1 Basic ASSUMPLONS. . . . v vt vttt e e e et et
4.1.1 Routing Algorithm

4.1.2 Switching Technique

4.2 NoC Architecture Modeling
4.3 Application Modeling
4.4 Technology Implications on Networks-on-Chip Platforms
References

5 NoC Performance Analysis.
5.1 Introduction
5.2 Related Work
5.3 Router Modeling for Performance Analysis

5.3.1 Basic Assumptions and Notations
5.3.2 Analytical Model of the Router
5.3.3 Computation of the Contention Matrix
5.4 Performance Analysis of Router, Shared Bus
and Point-to-Point Configurations
5.4.1 Router with Multiple Virtual Channels
5.4.2 Performance Models for Shared Bus
and Point-to-Point Architectures
5.4.3 Analytical Performance Comparisons
5.44 Using Equation 5.5 for Router Design.
5.5 Network Performance Analysis.
5.5.1 Average Buffer Utilization and Packet Latency
5.5.2 Network Throughput.
5.5.3 Opverview of the Performance Analysis Methodology . . .
5.6 Experimental Results
5.6.1 Average Packet Latency
5.6.2 Case Study: Application Mapping.
5.6.3 Network Throughput..........
5.6.4 Application to Arbitrary Topologies
5.6.5 Complexity and Run-Time Analysis
5.7 Summary e
References

33
33
34
34
35
36
36
37

39
39
40
40
41
43
43
46

49
49
51
52
52
53
56

57
58

58
59
62
63
64
65
66
67
67
69
70
71
72
73
73

http://dx.doi.org/10.1007/978-94-007-3958-1_3
http://dx.doi.org/10.1007/978-94-007-3958-1_3
http://dx.doi.org/10.1007/978-94-007-3958-1_3#Sec1
http://dx.doi.org/10.1007/978-94-007-3958-1_3#Sec1
http://dx.doi.org/10.1007/978-94-007-3958-1_3#Sec2
http://dx.doi.org/10.1007/978-94-007-3958-1_3#Sec2
http://dx.doi.org/10.1007/978-94-007-3958-1_3#Sec3
http://dx.doi.org/10.1007/978-94-007-3958-1_3#Sec3
http://dx.doi.org/10.1007/978-94-007-3958-1_3#Sec4
http://dx.doi.org/10.1007/978-94-007-3958-1_3#Sec4
http://dx.doi.org/10.1007/978-94-007-3958-1_3#Sec5
http://dx.doi.org/10.1007/978-94-007-3958-1_3#Sec5
http://dx.doi.org/10.1007/978-94-007-3958-1_3#Sec6
http://dx.doi.org/10.1007/978-94-007-3958-1_3#Sec6
http://dx.doi.org/10.1007/978-94-007-3958-1_3#Bib1
http://dx.doi.org/10.1007/978-94-007-3958-1_4
http://dx.doi.org/10.1007/978-94-007-3958-1_4
http://dx.doi.org/10.1007/978-94-007-3958-1_4#Sec1
http://dx.doi.org/10.1007/978-94-007-3958-1_4#Sec1
http://dx.doi.org/10.1007/978-94-007-3958-1_4#Sec2
http://dx.doi.org/10.1007/978-94-007-3958-1_4#Sec2
http://dx.doi.org/10.1007/978-94-007-3958-1_4#Sec3
http://dx.doi.org/10.1007/978-94-007-3958-1_4#Sec3
http://dx.doi.org/10.1007/978-94-007-3958-1_4#Sec4
http://dx.doi.org/10.1007/978-94-007-3958-1_4#Sec4
http://dx.doi.org/10.1007/978-94-007-3958-1_4#Sec5
http://dx.doi.org/10.1007/978-94-007-3958-1_4#Sec5
http://dx.doi.org/10.1007/978-94-007-3958-1_4#Sec6
http://dx.doi.org/10.1007/978-94-007-3958-1_4#Sec6
http://dx.doi.org/10.1007/978-94-007-3958-1_4#Bib1
http://dx.doi.org/10.1007/978-94-007-3958-1_5
http://dx.doi.org/10.1007/978-94-007-3958-1_5
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec1
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec1
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec2
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec2
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec3
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec3
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec4
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec4
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec5
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec5
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec6
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec6
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec7
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec7
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec7
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec8
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec8
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec9
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec9
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec9
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec10
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec10
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec11
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec11
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec11
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec12
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec12
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec13
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec13
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec14
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec14
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec15
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec15
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec16
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec16
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec17
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec17
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec18
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec18
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec19
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec19
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec20
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec20
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec21
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec21
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec22
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Sec22
http://dx.doi.org/10.1007/978-94-007-3958-1_5#Bib1

Contents

6 Application-Specific NoC Architecture Customization
Using Long-Range Links

6.1
6.2
6.3

6.4

6.5

6.6
6.7
6.8

6.9

Introduction
Related Work
Long-Range Link Insertion Algorithm
6.3.1 System Model and Basic Assumptions.
6.3.2 Problem Formulation.
6.3.3 TIterative Long-Range Link Insertion Algorithm
6.3.4 Evaluation of the Critical Traffic Value.
6.3.5 Small-World Properties of Networks Customized

Via Long-Range Links
Routing with Long-Range Links
Implementation of Long-Range Links
6.5.1 Traditional CMOS Implementation
6.5.2 Optical Interconnects for Implementing

Long-Range Links.
Energy-Related Considerations
Practical Use of Long-Range Links
Experimental Evaluation of Long-Range Link
Insertion Methodology
6.8.1 Evaluation Using Synthetic Benchmarks
6.8.2 Scalability Analysis.
6.8.3 Comparison with Topologies

of Higher Dimensionality.
6.8.4 Experiments Involving Real Traffic.
6.8.5 One Architecture for All
SUMMAryo

References e

7 Analysis and Optimization of Prediction-Based Flow Control
in Networks-on-Chip

7.1
7.2
7.3
7.4

7.5
7.6

Introduction
Overall Approach
Related Work o
System and Traffic Source Modeling.
7.4.1 System Model and Basic Assumptions.
7.4.2 Traffic Source Model
7.4.3 Predictive Control of Traffic Sources
State Space Modeling of NoC Routers.
Prediction-Based Flow Controller
7.6.1 Availability Predictor
7.6.2 Practical Implementation of the Predictor.
7.6.3 Using Prediction for Network Control
7.6.4 On the Stability of the Proposed Flow

Control Algorithm.

ix

75
75
78
78
78
79
80
81

83
85
88
90

90
91
92

93
93
94

http://dx.doi.org/10.1007/978-94-007-3958-1_6
http://dx.doi.org/10.1007/978-94-007-3958-1_6
http://dx.doi.org/10.1007/978-94-007-3958-1_6
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec1
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec1
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec2
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec2
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec3
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec3
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec4
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec4
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec5
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec5
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec6
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec6
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec7
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec7
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec8
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec8
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec8
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec9
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec9
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec10
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec10
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec11
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec11
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec12
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec12
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec12
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec13
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec13
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec14
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec14
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec15
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec15
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec15
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec16
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec16
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec17
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec17
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec18
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec18
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec18
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec19
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec19
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec20
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec20
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec21
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Sec21
http://dx.doi.org/10.1007/978-94-007-3958-1_6#Bib1
http://dx.doi.org/10.1007/978-94-007-3958-1_7
http://dx.doi.org/10.1007/978-94-007-3958-1_7
http://dx.doi.org/10.1007/978-94-007-3958-1_7
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec1
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec1
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec2
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec2
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec3
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec3
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec4
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec4
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec5
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec5
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec6
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec6
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec9
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec9
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec10
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec10
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec11
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec11
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec12
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec12
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec13
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec13
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec14
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec14
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec15
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec15
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec15

X Contents

7.7 Experimental Results. 124
7.7.1 Audio/Video System, 125

7.7.2 Synthetic Traffic. 127

7.7.3 Impact of the Local Buffer Size on Performance 128

7.7.4 Scalability of the Approach 130

7.7.5 Evaluation with an FPGA Prototype 131

T8 Summary 132
References 132

8 Design and Management of VFI Partitioned Networks-on-Chip. .. 135
8.1 Introduction 135
82 Related Work 137

8.3 VFI Partitioning and Static Voltage Assignment Problems 138
8.3.1 Basic Assumptions and Methodology Overview 138

8.3.2 Problem Formulations 139

8.3.3 Motivational Example 141

8.3.4 Partitioning Methodology. 142

8.4 Feedback Control of Voltage and Frequency. 144
8.4.1 State-Space Feedback Control 144

8.5 Experimental Results. 147
8.5.1 Experiments with Realistic Benchmarks 147

8.5.2 Experiments with a Real Video Application. 149

8.5.3 Evaluation of the Feedback Control Strategy 150

8.6 Extensions of Basic Theory 152
8.7 Summary 152
References 152

9 Conclusion. 155
Appendix A: Tools and FPGA Prototypes 157

Appendix B: Experiments Using the Single-Chip Cloud Computer
(SCO)Platform. 167

http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec16
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec16
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec17
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec17
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec18
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec18
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec19
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec19
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec20
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec20
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec21
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec21
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec22
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Sec22
http://dx.doi.org/10.1007/978-94-007-3958-1_7#Bib1
http://dx.doi.org/10.1007/978-94-007-3958-1_8
http://dx.doi.org/10.1007/978-94-007-3958-1_8
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Sec1
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Sec1
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Sec2
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Sec2
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Sec3
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Sec3
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Sec4
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Sec4
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Sec5
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Sec5
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Sec6
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Sec6
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Sec7
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Sec7
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Sec8
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Sec8
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Sec9
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Sec9
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Sec10
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Sec10
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Sec11
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Sec11
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Sec12
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Sec12
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Sec13
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Sec13
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Sec14
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Sec14
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Sec15
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Sec15
http://dx.doi.org/10.1007/978-94-007-3958-1_8#Bib1
http://dx.doi.org/10.1007/978-94-007-3958-1_9
http://dx.doi.org/10.1007/978-94-007-3958-1_9

Abbreviations

ALU
APCG
ASIC
CPU
CTG
DCT
DLL
DSM
DSP
FIFO
FLOPS
FPGA
FPU
GALS
HDL
IDCT
1P
ITRS
JPEG
MPEG
NI
NoC
P2P
PE

QoS

RTL
SoC
VC

Arithmetic logic unit

Application characterization graph
Application-specific integrated circuit
Central processing unit
Communication task graph

Discrete cosine transform

Delay locked loop

Deep-submicron

Digital signal processor

First-in first-out

Floating point operations per second
Field-programmable gate array
Floating point unit

Globally synchronous locally asynchronous
Hardware description language
Inverse discrete cosine transform
Intellectual property

International roadmap for semiconductors
Joint photographic experts group
Moving Picture Experts Group
Network interface

Network-on-chip

Point-to-point

Processing elements

Quality of service

Routing matrix

Register transfer level
System-on-chip

Virtual channel

Xi

Xii

VFI Voltage—frequency island
VLE Variable length encoding
VLSI Very large-scale integration

Abbreviations

Abstract

Design space exploration for systems-on-chip (SoCs) has focused traditionally on
the computational aspects of the problem at hand. However, as the number of
components on a single chip and their performance continue to increase, the
communication architecture plays a major role in reducing the area and power
consumption, as well as improving the overall performance of such multiprocessor
systems. As a result, a shift from computation-based design to communication-
based design becomes mandatory. Toward this end, the network-on-chip (NoC)
communication architecture emerged recently as a promising alternative to the
classical bus and point-to-point communication architectures.

In this book, we address a few fundamental research problems related to mod-
eling, analysis, and optimization of multiprocessor systems-on-chip (MPSoCs)
where communication happens via the NoC approach. More precisely, we present
new system-level models, algorithms, software tools, as well as hardware proto-
types that can be used to help the design and optimization of application-specific
NoCs. The discussion gravitates around the following key contributions to the state-
of-the-art:

e We discuss a new mathematical model for on-chip routers and then use this
model for NoC performance analysis. Our performance analysis approach can
be used not only to obtain fast and accurate performance estimates, but also
guide the NoC design process within an optimization loop.

e We present a methodology to automatically synthesize an NoC architecture
which is a superposition of a few long-range links and a standard mesh network.
The few application-specific long-range links we insert induce small world
effects and significantly increase the critical traffic workload at which the net-
work transitions from a free to a congested state. This way, we can exploit the
benefits offered by complete regularity and partial topology customization.

e We consider flow control algorithms specifically developed for NoCs and
propose a predictive closed-loop flow control mechanism which can control the
packet injection rate at traffic sources in order to regulate the total number of
packets in the network. This predictive flow control algorithm enjoys the

Xiii

Xiv Abstract

simplicity of the switch-to-switch algorithms, while directly controlling the
traffic sources, very much like the end-to-end algorithms. Consequently, this
approach can lead to significant reductions in the average and maximum packet
latency.

e The increase of energy consumption and synchronization among processing
cores that operate at multiple voltage and frequency levels are major issues in the
design of NoCs for multicore SoCs. To this end, we present a design method-
ology for partitioning an NoC architecture into multiple voltage-frequency
islands (VFIs) and assigning supply and threshold voltage levels to each VFL. In
order to compensate for run-time workload and parameter variations, we further
discuss an online feedback control mechanism that can dynamically adjust the
operating voltage and frequency around the static values found by the proposed
partitioning algorithm.

e Finally, we present hardware prototypes to support the theoretical findings
discussed in this book. Besides demonstrating the feasibility of our newly
proposed algorithms, prototyping enables us to evaluate the area, power con-
sumption, and performance figures of our designs accurately.

In summary, the relentless scaling down of CMOS technology will soon enable
multicore platforms consisting of thousands of communicating IP blocks inte-
grated on a single chip. Successful integration of these blocks on the same silicon
substrate relies on designing truly scalable communication architectures. The most
promising solution to date is given by the structured communication approach via
the NoC-based architecture. In this book, we present new system-level models,
algorithms, and tools meant to support a communication-centric design method-
ology for future multicore systems.

Keywords Multiprocessor systems-on-chip (MPSoCs) « On-chip communication -
Network-on-chip - Performance analysis + Flow control - Energy and power
consumption - Voltage-frequency islands - Dynamic power management - Router
design - Traffic modeling - Architecture customization - Long-range links

Chapter 1
Introduction

To alleviate the complex communication problems that arise as the number of on-
chip components increases, network-on-chip (NoC) architectures have been
recently proposed to replace global interconnects. This chapter first provides a
general description of NoC architectures. Then, it describes a generic synthesis
flow for NoCs starting from the application specification through tape-out and
applications. Finally, it addresses the interactions among these research problems
and put the NoC design process into perspective.

1.1 Network-on-Chip Architectures

Systems-on-Chip (SoCs) designed at nanoscale domain will soon contain billions
of transistors [18]. This makes it possible to integrate hundreds of IP cores running
multiple concurrent processes on a single chip. The design of such complex SoCs
faces a number of design challenges. First, the richness of computational resources
places tremendous demands on the communication resources. Consequently, the
entire design methodology needs to change from computation-based design to
communication-based design. Second, global interconnects can cause severe
on-chip synchronization errors, unpredictable delays and high power consumption.
As a consequence, exploiting dynamic voltage and frequency scaling in the con-
text of globally asynchronous locally synchronous design styles are needed in
order to mitigate such effects. Finally, increasing complexity, costs and tight time-
to-market constraints require new design methodologies that favor design re-use at
all levels of abstraction [14]. As a result, novel on-chip communication solutions
that can effectively address all these design issues are in high demand.
Traditionally, two types of on-chip communication schemes, namely Point-
to-Point (P2P) and bus-based communication, have been considered for imple-
menting integrated systems. The P2P communication architecture can provide the
utmost communication performance at the expense of implementing dedicated

U. Y. Ogras and R. Marculescu, Modeling, Analysis and Optimization 1
of Network-on-Chip Communication Architéctures, Lecture Notes

in Electrical Engineering 184, DOL: 10.1007/978-94-007-3958-1_1,

© Springer Science+Business Media New York 2013

2 1 Introduction

Application

-==

A Generic Node (Tile)

=, Routing & Router
P & Control Logic
A ‘- Inputports { T __ 3 Qutput ports
1 = i H i]
! — v l 'y [switch | Y
i Application 5 :}IGEDﬁ Fabric [~ l—y‘
v Mapping ¥ ey .]
o B/ AT)
Soun Channels Channels

Destination

[A [evor e |
[B

Processing
Element (PE)

Memory

Network-on-Chip (NoC)

Fig. 1.1 Generic NoC architecture, application and its mapping to the NoC are illustrated. The
anatomy of a node which consist of an on-chip router and processing element is also depicted on
the right-hand side of the figure

channels among all the communicating IP cores. However, the P2P architecture
lacks scalability due to the high complexity, cost and design effort required when
the system needs to scale up. On the other hand, the bus-based architecture can
connect a few tens of IP cores in a cost efficient manner by reducing the design
complexity and eliminating the dedicated wires and specialized interfaces required
by the P2P communication architecture. However, the bus-based architecture still
lacks scalability, both in terms of power consumption and performance, when it
comes to systems involving more than a few communicating cores. Indeed, from
an implementation standpoint, a bus-based design involving say tens of cores
would clearly provide very low performance figures due to its limited bandwidth
capabilities. Moreover, the large capacitive load of the bus drivers would result in
large delays and energy consumption in the interconnected wires [20]; this makes
the bus-based solution inappropriate for implementing a complex designs.

In contrast to these methods, the Network-on-Chip (NoC) approach represents a
promising solution to the on-chip communication problems [4, 8, 12, 13]. As shown
in Fig. 1.1, modern SoC architectures consist of heterogeneous IP cores such as
processing cores, graphics engines, video processors, embedded memory blocks, I/
O devices, etc. Each such processing element (PE) is attached to a local router
which connects the core to the neighboring nodes via a NoC type of interconnect.
More precisely, when a source node sends a packet to a destination node (see
Fig. 1.1), the packet is first generated and transmitted from the local processor to
the router attached to it via a network interface (NI). The NI is meant to enable
seamless communication between the various cores and the network. Then, the
packet is stored at the input channels and the router starts servicing it. This service
time includes the time needed to take a routing decision, allocate a channel and

1 Introduction 3

traverse the switch fabric. After being serviced, the packet moves to the next router
on its path and the process repeats until the packet arrives at its final destination. As
a result, the communication among various cores is achieved by generating, pro-
cessing, and forwarding packets through the network infrastructure rather than by
routing global wires. Not surprisingly, the network communication latency depends
on the characteristics of the target application (e.g., inter-task communication
volume, deadlines), computational elements (e.g., processor speed, memory), and
network characteristics (e.g., network bandwidth, buffer size).

1.2 Advantages of NoC Architectures

By eliminating the (ad-hoc) global wires, the NoC approach provides the fol-
lowing advantages:

e Scalability: Since the communication between different nodes is achieved by
routing packets, a large number of cores can be connected without the need of
using long global wires. Instead, the processing nodes can be connected to the
communication infrastructure via short links and standard interfaces. Moreover,
the network bandwidth scales with the number of cores in the design. Hence, the
NoC paradigm provides a highly scalable communication architecture.

¢ Design reuse: Reuse is recognized as one of the most effective techniques to
improve the design productivity [18]. The modularity of the NoC approach
offers a great potential for re-using the network routers and other existing IP
cores such as processor cores and multimedia codecs. The routers, the inter-
connect and the lower-level communication protocols can be designed, opti-
mized and verified only once and reused subsequently in a large number of
products. Likewise, many existing IP cores which have been designed with
certain protocols in mind (e.g., CoreConnect, AMBA) can be reused in NoC
designs using wrappers which can efficiently interface the existing bus-based IPs
and the NoC communication infrastructure.

e Predictability: The structured nature of wires in NoCs facilitates well-con-
trolled and optimized electrical parameters. In turn, these controlled parameters
enable the use of aggressive signaling circuits which can reduce the power
dissipation and propagation delay significantly [8]. In addition to this, coping
with physical design problems such as cross-talk, and immunity to noise
becomes easier due to this regularity.

1.3 A Generic NoC Synthesis Flow

Before surveying the NoC research, we describe a generic synthesis flow for NoCs
starting from the application specification through tape-out. As shown in Fig. 1.2,
the flow has three major steps: (1) Application modeling and optimization, (2) NoC

1 Introduction

and Optimization [Physical Synthesis & Tape—out]

i NoC Architecture Analysis and Optimization ;
esign |} 5 ;
goals & |[i | Communication > Communication [¢ === ===+ c !
@ @ constraints i Infrastructure Paradigm %’_ !
1 =1 :
® i =
@ |_"_’ Mapping / Analysis & i
| Scheduling Optimization Y !
: gl !
i gl
______ . ! | Application Communication 5 :
@ fol M Analysis D — @ :
H 8 i 1 - 4
o L,]
i o i | 1+ NoC Design Validation and Synthesis '
QO ' 1 y
e : i
gl ; Component '
; | NoC Testing | Instantiation !
1 :
; | NoC Verification | T i
i Communication | i
Application Modeling ! * Component Library |
i i
L 1

Fig. 1.2 A generic NoC synthesis flow. It has three major steps: (1) Application modeling and
optimization, (2) NoC architecture analysis and optimization, (3) NoC design validation and
synthesis

architecture analysis and optimization, (3) NoC design validation and synthesis.
These steps are detailed next.

Application Modeling and Optimization. One of the first questions to be
answered is what are the target applications and their associated traffic patterns,
as well as the interconnect bandwidth requirements for each node in the network
(see left-most box in Fig. 1.2). In coherent shared memory architectures, the
communication patterns depend primarily on the flow of external memory traffic
and the on-die cache hierarchy and coherence protocol. On the other hand, non-
coherent shared memory or message passing models depend more directly on
the explicit communication patterns of various applications. Clearly, the
application partitioning and overall system architecture (e.g., homogenous vs.
heterogeneous cores, synchronous vs. asynchronous clocking, memory con-
trollers, I/O devices, etc.) significantly impact the network traffic. Having a good
model for the target application helps finding the best application-architecture
combinations that satisfy various performance and energy constraints. Appli-
cation models must be scalable and flexible enough for quick analysis. Fur-
thermore, it is also crucial to capture the key behavior of the application in order
to have confidence in the predicted results. If a software reference is used for the
target application, or the application has software components, then a code
partitioning step may be needed [2, 17]. This step is crucial to extract as much
parallelism from the application as possible. Only after this step is completed,
the concurrency provided by the NoC architectures can be fully exploited.

1.3 A Generic NoC Synthesis Flow 5

Finally, when the NoC platform is general purpose or it is likely to accom-
modate a large set of applications, random traffic models such as uniform traffic
[11] may be used to suplement the standard benchmark.

e NoC Communication Architecture Analysis and Optimization. A good
understanding of the traffic patterns and system requirements helps determining
the optimal network topology. This has a huge impact on design costs, power,
performance and helps designers choose an efficient routing algorithm and flow
control scheme in order to manage the incoming traffic. In addition to perfor-
mance, accurate power models are of crucial importance. Indeed, early and
efficient floorplanning and accurate estimation of the area and power are nec-
essary for optimizing the design and ensuring a quick backend convergence.
These issues are shown in the upper right box in Fig. 1.2. At this point, com-
munication bandwidth and network latency are the key performance metrics,
while area, power, and reliability are the key cost metrics. Several formalisms
(e.g., queueing networks, Petri nets, process algebra, etc.) can be used to carry
out this analysis step. If the design constraints are not met, then the mapping
process and/or architectural parameters are reiterated until the desired result is
obtained. From this perspective, the performance analysis needs to be tractable
in order to allow for cutting down the time spent in the design cycle. This is
important to enable fast design space exploration and finding good quality
solutions within a short (and predictable) time budget. Once the results obtained
at this high level of abstraction are satisfactory and the design space is effec-
tively pruned, more accurate evaluations of the candidate architectures are
needed. Referring to the methodology in Fig. 1.2, we note that simulation and
often prototyping are used for performance evaluation purposes. While this
phase, especially prototyping, may take a significantly longer time, it is nec-
essary to determine the final architecture and mapping that will be used during
the synthesis stage.

e NoC Design Validation and Synthesis. After a particular architecture-mapping
combination is selected, the final phase seeks to implement the NoC commu-
nication architecture by instantiating the components from a communication
library and carrying out the synthesis process. This includes simulation and
verification of the final design to ensure that user-defined design constraints
and overall design goals are properly met. Finally, the synthesis, floorplanning
and layout generation steps are performed before tape-out, as summarized in
Fig. 1.2. Prototyping, verification and testing are also used to address early on
various resilience and fault tolerance issues.

In summary, the NoC design is a multi-faceted process involving both application
and communication architecture. This book is primarily focused on the second
stage highlighted in Fig. 1.2, i.e. NoC communication architecture analysis and
optimization. We also address NoC architecture and application modelling issues
in Chap. 4. Other important issues such as NoC synthesis flow [5, 19], testing [1,
3], verification [7, 10], and low-level implementation [15] are addressed in the
literature, as we detail next.

http://dx.doi.org/10.1007/978-94-007-3958-1_4
http://dx.doi.org/10.1007/978-94-007-3958-1_4

6 1 Introduction

1.4 NoC Design Space and State of the Art

From a design methodology standpoint, designing on-chip networks differs sig-
nificantly from designing large scale interconnection networks [6, 9]; this is
mainly due to the different cost functions and constraints that need to be imposed
in order to ensure the on-chip functionality. For example, the energy consumption
is one of the major constraints in NoC design. Moreover, NoCs are far more
resource limited compared to traditional networks. For this reason, NoCs should be
implemented with minimum area overhead. Likewise, unlike large scale networks,
NoCs can be applications-specific. Therefore, an ample portion of the design effort
is likely to go into optimizing the network for a specific application or class of
applications.

NoC design problems can be conceived as representing a 3-D design space [16],
as shown in Fig. 1.3. In this representation, the level of randomness increases
towards the tip of the x-, y-, and z- arrows. The communication infrastructure is
depicted along the x-axis in Fig. 1.3. This dimension defines how nodes are
interconnected to each other and reflects the properties of the underlying network.
As shown in Fig. 1.3, examples include regular networks, small-world networks,
networks with customized buffer sizes, or fully customized networks. The com-
munication paradigm is represented by the y-axis in Fig. 1.3. This dimension
captures the dynamics of transferring packets (e.g., deterministic vs. adaptive
routing, QoS-based routing, etc.) through the network. Finally, the third

applicationt y4

multimedia

&£y

indom
—|

‘communication
paradigm

a=¢ _ non-uniform buffers

()
pE
X

communication
infrastructure

Fig. 1.3 The NoC design space in a 3D representation. As an example, optimizing the
communication infrastructure (Sect. 2.3) in conjunction with the communication paradigm
(Sect. 2.2) covers a region on the XY plane

http://dx.doi.org/10.1007/978-94-007-3958-2_2
http://dx.doi.org/10.1007/978-94-007-3958-2_2
http://dx.doi.org/10.1007/978-94-007-3958-1_2
http://dx.doi.org/10.1007/978-94-007-3958-1_2

1.4 NoC Design Space and State of the Art 7

dimension, application mapping, defines how different tasks of the target appli-
cation get mapped to the network nodes (e.g., how various traffic sources and sinks
are distributed across the network) in order to satisfy various design constraints.
Although not depicted in Fig. 1.3, analysis, simulation and validation can be
viewed as encompassing the entire design space; these steps are an integral part of
work in any dimension and for research spanning multiple dimensions.

It is important to note that each axis represents a continuum rather than a
discrete set of solutions. Also, any point inside the 3D representation in Fig. 1.3
actually denotes a possible design trade-off among various problems and tech-
niques already discussed. For example, designing a routing algorithm while
solving the topology customization problem corresponds to finding a legitimate
point in the x-y plane. More generally, the shaded circle within the x-y plane shows
a range of design solutions which correspond to various design trade-offs between
the communication infrastructure and the communication paradigm. Indeed, by
projecting a particular application (e.g., MPEG-2 in Fig. 1.3) onto the x-y plane,
one can see that any solution within the shaded circle can implement the appli-
cation at hand while pursuing different trade-offs. By the same token, by projecting
up a particular point from the x-y plane onto the application plane, we can see a
family of related multimedia applications (e.g., MPEG-2 video, audio) benefiting
from such a particular implementation.

Design space exploration along each dimension has been considered to some
extent without explicitly referring to such a classification. In the next chapter, we
provide a detailed literature review following the three dimensional design space
view.

References

1. Amory AM, Briao E, Cota E, Lubaszewski M, Moraes FG (2005) A scalable test strategy for
network-on-chip routers. In: Proceedings of IEEE international test conference, November
2005

2. Ball M, Cifuentes C, Deepankar B (2004) Partitioning of code for a massively parallel
machine. In: Proceedings of the international conference on parallel architecture and
compilation techniques, September 2004

3. Bengtsson T, Jutman A, Kumar S, Ubar S, Peng Z (2006) Off-line testing of delay faults in
NoC interconnects. In: Proceedings of EUROMICRO conference on digital system design,
August 2006

4. Benini L, De Micheli G (2002) Networks on chips: a new SoC paradigm. IEEE Comput
35(1):70-78

5. Bertozzi D et al (2005) NoC synthesis flow for customized domain specific multiprocessor
systems-on-chip. IEEE Trans Parallel Distrib Syst 16(2):113-129

6. Bertsekas D, Gallager R (1992) Data Networks. Prentice Hall, Upper Saddle River

7. Chatterjee S, Kishinevsky M, Ogras UY (June 2010) Quick formal modeling of
communication fabrics to enable verification. In Proceedings IEEE international high-level
design validation and test workshop, June 2010, pp 42-49

8. Dally WJ, Towles B (2001) Route packets, not wires: on-chip interconnection networks. In:
Proceedings of design automation conference, June 2001

10.

11.

12.

13

15.

16.

17.

18.

19.

20.

1 Introduction

. Duato J, Yalamanchili S, Ni L (2002) Interconnection networks: an engineering approach.

Morgan Kaufmann, San Mateo

Goossens K et al (2005) A design flow for application-specific networks-on-chip with
guaranteed performance to accelerate SoC design and verification. In: Proceedings of design,
automation and test in Europe conference, March 2005

Grecu C, Ivanov A, Pande P, Jantsch A, Salminen E, Ogras UY, Marculescu R (2007) An
initiative towards open network-on-chip benchmarks. NoC benchmarking white paper
[Online]. http://www.ocpip.org/uploads/documents/NoC-Benchmarks-WhitePaper-15.pdf
Hemani A, Jantsch A, Kumar S, Postula A, Oberg J, Millberg M, Lindvist D (2000) Network
on a chip: an architecture for billion transistor era. In: Proceedings of the IEEE NorChip
conference, November 2000

. Jantsch A, Tenhunen H (eds) (2003) Networks-on-chip. Kluwer, Norwell
14.

Keutzer K, Malik S, Newton AR, Rabaey J, Sangiovanni-Vincentelli A (2000) System-level
design: orthogonalization of concerns and platform-based design. IEEE Trans Comput-Aided
Design Integr Circ Syst 19(12):1523-1543

Lee K et al (2004) A 5ImW 1.6GHz on-chip network for low-power heterogeneous SoC
platform. In: International solid-state circuits conference, February 2004

Marculescu R, Ogras UY, Peh L, Jerger NE, Hoskote Y (2009) Outstanding research
problems in NoC design: system, microarchitecture, and circuit perspectives. IEEE Trans
Computer-Aided Design Integr Circ Syst 28(1):3-21

Ryoo S et al (2007) Automatic discovery of coarse-grained parallelism in media applications.
Trans High-Performance Embed Archit Compilers 1(1):187-206

Semiconductor Association (2006) In: The international technology roadmap for
semiconductors (ITRS)

Srinivasan K, Chatha KS, Konjevod G (2006) Linear programming based techniques for
synthesis of network-on-chip architectures. IEEE Trans Very Large Scale Integr Syst
14(4):407-420

Wolkotte PT, Smit GJM, Kavaldjiev N, Becker JE, Becker J (2005) Energy model of
networks-on-chip and bus. In: Proceedings of the international symposium on system-on-
chip, November 2005

http://www.ocpip.org/uploads/documents/NoC-Benchmarks-WhitePaper-15.pdf

Chapter 2
Literature Survey

One of the most important reasons for using NoC architectures is their promise for
scalability [15, 41, 60, 64, 148]. Several books provide an introduction to the NoC
concept and discuss various research issues [50, 76, 87, 107, 125], while an
exhaustive list of references can be found in some NoC bibliographies available
on-line [121, 127]. Likewise, a comprehensive introduction to NoCs and existing
design practices is presented in [21]. In what follows, we provide a systematic
literature review which is structured along the lines discussed in [105].

2.1 Application Modeling and Optimization
for NoC Communication

2.1.1 Traffic Models

Traffic models refer to the mathematical characterization of workloads generated
by various classes of applications. With network performance being highly
dependent on the actual traffic, it is obvious that accurate traffic models are needed
for a thorough understanding of the huge design space of network topologies,
protocols, and implementations. Since implementing real applications is time-
consuming and lacks flexibility, such analytical models can be used instead to
evaluate the network performance early in the design process.

Traffic characteristics have been long recognized as playing a major part in
multicore systems design. For instance, in [171] the authors introduce an analytical
traffic model based on identifying self-similar effects in multimedia traffic. These
effects have important consequences for the design of on-chip multimedia systems
since self-similar processes have properties which are completely different from
traditional short-range dependent or Markovian processes that have been tradi-
tionally used in system-level analyses. Later, the authors in [160] derive a com-
prehensive traffic model for NoCs which exposes both spatial and temporal
dimensions of traffic via three statistical parameters: hop count, burstiness, and

U. Y. Ogras and R. Marculescu, Modeling, Analysis and Optimization 9
of Network-on-Chip Communication Architéctures, Lecture Notes

in Electrical Engineering 184, DOL: 10.1007/978-94-007-3958-1_2,

© Springer Science+Business Media New York 2013

10 2 Literature Survey

packet injection distribution. Interestingly enough, it has been subsequently
reported that even the traffic generated by programmable cores consists of multiple
program phases which exhibit the same type of self-similar behavior [145].

It should be noted, however, that the research in this area is still behind due to
the lack of a widely accepted set of NoC benchmarks. This situation has two
primary reasons. First, the applications suitable for NoC platforms are typically
very complex. For instance, it is common for applications to be partitioned among
tens of processes (or more) in order to allow for evaluations of scheduling,
mapping, etc. For general purpose chip multiprocessors (CMPs), benchmarks such
as SPLASH, originally designed for shared-memory multiprocessors, may be used
but it is, however, unclear how effectively such benchmarks can actually stress the
NoCs. Second, compared to traditional research areas like physical design where
the design constraints are static (e.g., the aspect ratio of the blocks, number of
wires between different blocks, etc.), the NoC research requires detailed infor-
mation about the dynamic behavior of the system; this is hard to obtain even using
detailed simulation or prototyping. As a result, most researchers and designers still
rely on synthetic traffic patterns such as uniform random, bit-permutation traffic, to
stress-test a network design [40, 90]. A first step towards a unified approach for
embedded platforms has been made recently via the OCP-IP benchmarking ini-
tiative [58]. Similarly, there have been initial steps towards releasing parallel
benchmarks targeting the future CMPs [19]. Such initiatives can certainly boost
the research progress in this area. However, there needs to be more research aimed
at developing accurate traffic models, as well as in-depth studies that project the
NoC traffic for emerging workloads.

2.1.2 Application Mapping

Applications are typically described as a set of concurrent tasks that have been
already assigned and scheduled onto a set of selected IP cores. The mapping
problem for NoCs is to decide how to topologically place the selected set of cores
onto the PEs of the network, such that some metrics of interest are optimized. We
note that PE simply means a placeholder connected to one of the network routers.
In other words, “mapping” here means determining which IP core connects to
which router in the network; this, obviously, greatly impacts both performance and
energy consumption of the NoC.

The mapping problem for NoCs has been first addressed by the authors of [68],
where a branch and bound algorithm is proposed to map a given set of IP cores
onto a regular NoC architecture such that the total communication energy is
minimized. At the same time, the performance of the resulting communication
system is guaranteed to satisfy the specified design constraints through bandwidth
reservation. Follow-up work considered the mapping problem with increased path
diversity [113] as well as additional latency constraints [162]. Likewise, a multi-
objective mapping algorithm_that_finds the Pareto mappings with optimum

2.1 Application Modeling and Optimization for NoC Communication 11

performance and power consumption is presented in [7]. Improving upon these
studies, the authors in [62] propose a more general, unified approach for appli-
cation mapping and routing path selection which considers both best effort and
guaranteed service traffic.

One key component needed to solve the application mapping problem is the
analytical model used for solution evaluation. For instance, if the goal is commu-
nication energy minimization, an accurate energy model is crucial. We note that
many mapping algorithms use (directly or indirectly) the average packet hop count
as a cost function, by relating the average number of packet hops to the commu-
nication energy consumption [71] or communication cost [162]. Along the same
lines, effective performance models (such as those discussed in Chap. 5) are needed.
When PEs have different sizes, the communication latency and power consumption
per unit of data exchanged between any two neighboring routers may differ sig-
nificantly. Therefore, embedding floorplanning information within the mapping
loop becomes necessary to get more accurate energy/latency estimates [112].

With increasing level of programmability, MPSoCs are used under multiple use
case scenarios. Hence, it becomes necessary to allocate the NoC resources based
on different communication requirements (i.e., bandwidth and latency) and traffic
patterns that characterize various use cases [116]. By the same token, with ever
increasing power density and cooling costs, it is important to reduce or eliminate
the potential hotspots and have a thermally-balanced design [73]. Finally, efficient
techniques for run-time mapping and management of applications are needed.
Towards this end, software development and code placement for embedded
multiprocessors are discussed in [54]. Similarly, for applications launched
dynamically, run-time mechanisms for mapping [3, 37] and/or migrating [17] are
needed. Since execution time and arrival order of applications are not known a
priori, finding optimal solutions is difficult and remains a big challenge.

2.1.3 Application Scheduling

Another important problem in NoC design is communication and task scheduling.
Although scheduling is a traditional topic in computer science, most previous work
focuses on maximizing performance [139, 176]. More recently, energy-aware
scheduling techniques for hard real-time [59, 146, 156] and distributed [99, 109]
systems have also been introduced, but they address only the bus-based or P2P
communication. Without taking into consideration the network congestion which
may change dynamically during tasks execution, such techniques cannot be
directly applied to NoC scheduling. We note that mapping and scheduling prob-
lems can be considered jointly. However, finding the optimum solution remains an
open problem due to its complexity.

Communication and task scheduling for NoCs is addressed in [69] where the
authors present a scheduling algorithm which minimizes the overall energy con-
sumption_of the system while guaranteeing the real-time deadlines imposed on

http://dx.doi.org/10.1007/978-94-007-3958-1_5
http://dx.doi.org/10.1007/978-94-007-3958-1_5

12 2 Literature Survey

tasks. Likewise, scheduling and arbitration policy for NoCs that use code division
multiple access protocol is presented in [81].

Capturing the dynamic system behavior, i.e., the change system behavior due to
the incoming and completed applications, is also important. To this end, the work
in [140] models the applications as a set of independent jobs and presents exact
timing models that capture both computation and communication of a job. Simi-
larly, the work in [165] extends the NoC scheduling to consider multiple use case
scenarios, hence communication patterns. By allowing the bandwidth to be shared
among multiple communication scenarios, a better resource utilization of the NoC
is obtained.

It should be also noted that dynamic voltage frequency scaling (DVFS) can be
used in conjunction with scheduling in order to minimize the overall energy
consumption. Such techniques have been proposed in the past for both bus- [59,
146] and NoC-based communication [155]. In these approaches, voltage scaling is
applied to tasks and/or communication to minimize the power consumption, while
accounting for the DVS overhead and satisfying the application deadlines.

We note that although we discuss here the mapping and scheduling problems
separately, they can also represent a joint optimization problem. However, since
they are both very hard problems to solve, such an integrated approach remains an
open problem. This is particularly challenging for NoCs since communication
delay is difficult to estimate and so deriving accurate models that can be used to
guarantee hard deadlines is a huge problem by itself.

2.2 Communication Paradigm
2.2.1 Packet Routing

Given an underlying topology, the routing protocol determines the actual route
taken by a message. The routing protocol is important as it impacts all network
metrics, namely, latency (as the hop count is directly affected by the actual route),
throughput (as congestion depends on the ability of the routing protocol to load
balance), power dissipation (as each hop incurs a router energy overhead), QoS (as
routing can be used to channel different message flows along distinct paths to
avoid interference) and finally reliability (as the routing protocol needs to choose
routes that avoid faults).

Routing has been extensively studied in classical interconnection networks,
many of which have been leveraged in on-chip networks. One example is the
dimension-ordered routing which routes packets in one dimension, then moves on
to the next dimension, until the final destination is reached. While such a technique
is very popular due to its simplicity, adaptive routing techniques (e.g., turn model
routing, planar adaptive routing [40, 47]) can provide better throughput and fault
tolerance by allowing alternative paths depending on the network congestion and

2.2 Communication Paradigm 13

run-time faults. Oblivious routing algorithms which generate routes without any
knowledge of traffic have also been extensively studied in the context of classical
interconnection networks [147] and can be relevant to on-chip networks due to
their low overhead [169].

New routing protocols have also been investigated specifically for NoCs. For
instance, deflective routing in [119] routes packets to one of the free output
channels belonging to a minimal path; if this is not possible, then packets are
misrouted. Techniques have been also proposed to dynamically switch between
deterministic and adaptive routing to exploit the trade-off between them [70].

Application-specific customization of routing protocols [71, 113] and techniques
to provide low overhead routing algorithms with high path diversity [1, 114] have
been explored. With NoCs being increasingly concerned with power, thermal and
reliability issues, there exists recent work proposing thermal- [151], and reliability-
aware [103] routing algorithms.

While some existing research into routing algorithms for off-chip intercon-
nection networks can be leveraged for NoCs, the significantly different constraints
of on-chip implementations lead to new challenges. First, the ultra-low latencies
[56] and very high frequencies [170] of some NoCs make it difficult to incorporate
sophisticated routing algorithms such as adaptive routing. The tight power con-
straints and reliability issues also lead to challenges in power-aware and fault-
tolerant routing. With static topology irregularity, it is difficult to find minimal
routes that can avoid deadlock and livelock situations (e.g., [30]). This is a
research direction that needs more attention in the future. Relying on dimension-
ordered routing as the escape routing function in irregular topologies becomes
difficult and implementations typically require tables that incur delay, area, and
power overheads [26]. To date, the vast majority of NoC routing solutions have
focused on unicast traffic, that is, sending from one PE to another. Support for on-
chip multicast [49] needs to be considered too, with emphasis on lightweight
solutions such that the tight on-chip constraints can be met.

2.2.2 Switching Techniques

Switching, also called flow control,' governs the way in which messages are
forwarded through the network. Typically, the messages are broken down into flow
control units (flits) which represent the smallest unit of flow control. The switching
algorithm then determines if and when flits should be buffered, forwarded, or
simply dropped [40, 47]. As a result, the switching algorithm has the most direct
impact on router microarchitecture and pipeline.

! The two terms “switching” and “flow control” have been used interchangeably in leading NoC
texts, [40,.47, 107].

14 2 Literature Survey

Among the commonly used switching techniques in interconnection networks,
wormhole switching seems the most promising for NoCs due to the limited
availability of buffering resources and tight latency requirements. Virtual channels
[42] are widely used in off-chip interconnection networks and are naturally
adopted for NoC design to improve network bandwidth and tackle deadlock.
However, as the design requirements change dramatically, the underlying substrate
presents new opportunities for designing flow control algorithms.

Early work on NoC flow control aggressively drives down the router delay to a
single cycle, through static compiler scheduling of network switching operations
[168], dedicated look-ahead signals for setting up the switch ahead of time [56], by
speculatively allocating resources to move the latency associated with resource
allocation and multiplexing off the critical path at low traffic loads [111, 135], or
through advanced reservation of resources [134]. While most studies focus on
packet switching, several papers investigate the potential of circuit switching and
time division multiplexing, to reduce the arbitration and buffering overheads of
packet-switched routers [48, 62, 174].

Several techniques tackle NoC throughput such as dynamically varying the
number of virtual channels (VCs) assigned to each port, to better adapt to the
traffic load [117]. Express virtual channels aggressively drive down the router
latency to just link latency, while extending throughput by having VCs that are
statically defined to cross multiple hops [88]. Tackling latency and throughput
simultaneously, layered switching in [98] hybridizes wormhole and cut-through
switching by allocating groups of data words which are larger than flits but smaller
than packets.

There is still a significant latency/throughput gap between the state-of-the-art
NoCs and the ideal interconnect fabric of dedicated wires [88]. This disparity
largely lies in the complex routers necessary at each hop for delivering ultra-low-
latency and/or high bandwidth. In order for NoCs to be an efficient and effective
replacement of dedicated wires as the primary communication fabric, there is a
need for new switching techniques that can obviate this router overhead and truly
deliver the energy-delay-throughput of dedicated wires.

2.2.3 QoS and Congestion Control

Conventional packet-switched NoCs multiplex message flows on links and share
resources among these flows. While this results in high throughput, it also leads to
unpredictable delays per individual message flows. For many applications with
real-time deadlines, this non-determinism can substantially degrade the overall
application performance. Thus, there is a need for research into NoCs that can
provide deterministic bounds for communication delay and throughput.

QoS in NoCs is typically handled through three types of approaches. First,
resources such as VCs can be pre-reserved with a fair mechanism for allocating
resources, between different traffic_flows [20, 55, 94, 95, 108]. Second, multiple

2.2 Communication Paradigm 15

priority levels can be supported within the network such that the urgent traffic can
have a higher priority over the regular traffic [13, 25, 63, 104]. Techniques to
ensure global fairness to network hot-spots have been proposed in [93]. Finally,
QoS-aware congestion control algorithms have been proposed to avoid the spikes
in delay when the traffic load approaches saturation by having congestion control
at the network interface regulate traffic and ensure fairness [27, 46, 119, 124].

Future CMPs and MPSoCs impose increasingly more QoS demands on NoCs;
yet, support for QoS has to be extremely light weight. Cache-coherent CMPs
would benefit from NoC being able to preserve the ordering semantics of a bus,
thereby easing consistency support. Being able to provide guarantees on packet
deliveries such as snoop responses will also ease protocol design and lower the
protocol overhead. Both SoCs and CMPs will benefit from NoCs that can support
dynamically defined QoS levels and needs, as well as dynamically defined parti-
tions of the NoC that support different QoS.

Further, it will greatly strengthen the fundamental basis of NoCs to have
research into analytical models that can estimate network latency and/or
throughput for arbitrary traffic patterns, as these can be used to feed into QoS
engines with low implementation overhead.

2.2.4 Power and Thermal Management

Due to concerns on battery lifetime, cooling and thermal budgets, power issues are
at the forefront of NoC design. Seminal work on router power modeling [133]
along with position papers that highlight the importance of NoC power con-
sumption [15, 41] motivated research into low-power NoCs. There has been
research into run-time NoC power management using dynamic voltage scaling on
links [150], as well as shutting links down based on their actual utilization [80,
161]. Globally Asynchronous Locally Synchronous (GALS) approaches to
dynamic voltage and frequency scaling further leverage the existing boundaries
between various clocking domains [14, 126].

Besides average power, peak power control mechanisms for NoCs have also
been explored due to their impact on thermal hotspots [18]. Power and thermal
management are also very tightly related to reliability. An approach for joint power
and reliability management is presented in [159], while error coding schemes for
improved reliability and power consumption are presented in [16, 175].

Thermal dissipation is another metric of interest and mechanisms have been
investigated to control peak power with respect to its impact on thermal dissipation
[73, 151]. To this end, thermally-aware task scheduling for MPSoCs is presented
in [39] and thermal optimization of 3D implementations via task scheduling and
voltage scaling has been studied in [166].

With NoCs facing highly-constrained power envelopes, run-time power man-
agement techniques are needed to reduce peak power consumption so as to avoid
thermal _emergencies. Challenges remain in dynamically estimating the thermal

16 2 Literature Survey

hotspots as well as dynamic power profile in the presence of high workload
variations. Holistic approaches covering hardware (for estimation and low level
control), firmware (for implementing system level power manager) and operating
system (for application characterization) are needed to tackle this problem.

Another wide open area for research is related to distributed control strategies
for power and thermal management in NoCs. Techniques like [126, 158] are based
on a centralized power manager but perhaps relying only on localized information
may have its own advantages for NoCs; whether or not this is indeed the case
remains to be investigated. It is important to note, again, that the accuracy of the
energy models is crucial for these optimization techniques. Ideally, such models
should target both dynamic and static power dissipation. While there exist pre-
liminary efforts in this direction (e.g., [106] where adaptive body biasing is used to
minimize static energy consumption), more work is needed to achieve practical
solutions.

2.2.5 Reliability and Fault Tolerance

As CMOS technology approaches the nanoscale domain, there is an increasing
need for studying how NoC architectures can tolerate faults and underlying pro-
cess variations. For instance, shrinking transistor sizes, smaller interconnect fea-
tures and higher operating frequencies of current CMOS circuits lead to higher
soft-error rates and an increasing number of timing violations [154]. Moreover, the
combination of smaller devices and voltage scaling in future technologies will
likely result in increased susceptibility to transient faults. Therefore, in order to
reduce the cost of design and verification, the future SoC architectures need to rely
on fault-tolerant approaches.

Fault-tolerant multi-chip interconnection networks have been investigated,
mostly in the areas of fault-tolerant routing or microarchitecture [47]. For NoCs,
one of the earliest fault-tolerant communication approaches is the stochastic
communication described in [23]. This approach is based on probabilistic broad-
cast where packets are forwarded randomly to the neighboring nodes. A theoretical
model explaining the stochastic communication and relating the node coverage to
the underlying properties of a grid topology was also proposed. Similarly, the
studies in [138, 141] explore how NoC routing algorithms can route around faults
and sustain network functionality in the presence of faults.

Researchers have also modeled the interaction between various NoC metrics,
like delay, throughput, power and reliability [52]. Several studies look specifically
into router design and ways to improve the NoC reliability through microarchi-
tectural innovations that go beyond the expensive alternative of having redundant
hardware [6]. The fault tolerance overhead of various flow control techniques is
analyzed in [142]. Similarly, power consumption of link level and end-to-end data
protection in NoCs is analyzed in [75], while energy efficiency of error correction
at the receiver.end. is studied in [16, 115].

2.2 Communication Paradigm 17

With devices moving into deep submicron technologies, reliability becomes a
very important issue. However, research into NoC reliability is still in its infancy
and thus realistic fault models that are a good representation of physical realities
for NoCs are needed. Research exploring the trends in soft error rates for com-
binational and sequential logic (e.g., [110, 157]) can potentially be relevant to
router microarchitectures as well. Future work that will critically impact the NoC
power-performance-reliability trade-off includes the cost effectiveness of provid-
ing fault-tolerance, while maintaining suitable levels of fault isolation and
containment.

2.3 Communication Infrastructure
2.3.1 Topology Design

The ability of the network to efficiently disseminate information depends largely
on the underlying topology. Indeed, besides having a paramount effect on the
network bandwidth, latency, throughput, overall area, fault-tolerance and power
consumption, topology plays an important role in designing the routing strategy
and mapping the IP cores to the network.

The simplicity and regularity of mesh structures makes design approaches
based on such a modular topologies very attractive. More precisely, regularity
improves timing closure, reduces dependence on interconnect scalability, and
enables the use of high performance circuits. Typically, one-dimensional topolo-
gies (e.g., ring [136]) and two-dimensional topologies (e.g., mesh and torus [56,
167]) are the default choices for NoC designers. Node clustering to obtain
topologies like the concentrated mesh [9] and hierarchical star [92] is a viable
alternative to amortize the router overhead and reduce latency. Higher-radix net-
works like the flattened butterfly [85] reduce power and latency by reducing the
number of intermediate routers and the wiring complexity over conventional
butterfly but they increase the number of long wires.

Despite the benefits of regular network topologies, customization is also
desirable for several reasons. First, when the size or shape of the cores varies
widely, using regular topologies may waste area. Moreover, for real applications,
the communication requirements of the components can vary widely. Designing
the network to meet the requirements of highly communicating cores results in
under utilization of other components, while designing it for the average case
results in performance bottlenecks. Finally, for application-specific NoCs, a
detailed a priori understanding of the communication workload can be exploited to
fully customize the network topology [65, 122]. For instance, the approach pro-
posed in [137] enables the automatic design of the communication architecture of
a complex system using a library of pre-defined IP components. Similarly, the
work in [164] presents a mixed integer linear programming-based technique for

18 2 Literature Survey

NoC topology synthesis with the objective of minimizing the power consumption
subject to performance constraints.

Interestingly enough, the two extreme points in the design space (i.e., com-
pletely regular and fully customized topologies) are not the only possible solutions
for on-chip communication. Indeed, by inducing small world effects, the perfor-
mance of regular topologies can be significantly improved with minimal impact on
area and energy consumption [123]; this idea will be discussed in detail later in
Chap. 6. However, for now it suffices to say that inducing small world effects via
long-range links has a wide applicability as it has been demonstrated by its
extension to on-chip radio-frequency links [33], express virtual channels [88] and
wireless links [132].

Generally speaking, the problem of optimal topology synthesis for a given
application does not have a known theoretical solution. Although the synthesis of
customized architectures is desirable, distorting the regular grid structure leads to
various implementation issues such as complex floorplanning, uneven wire
lengths, etc. Although we have discussed only planar substrates, 3D die stacking
provides the opportunity for higher radix topologies through the use of inter-die
connections [84, 166, 177] and warrants further exploration.

2.3.2 Router Design

The design of a router involves determining the flow control techniques, number of
virtual channels, buffer organization, switch design, pipelining strategy while
adhering to target clock frequency and power budgets. All these issues require
careful design since they have significant impact in terms of performance, power
consumption and area.

The main focus in designing a router is to minimize the latency through it,
while meeting bandwidth requirements. Reservation [134] and speculation [111,
135] can be used to hide the routing and arbitration latencies and achieve a single-
stage router design. Decoupled parallel arbiters and smaller crossbars for row and
column connections can reduce contention probability and reduce latency [83].
Moreover, techniques such as segmented crossbars, cut-through crossbars and
write-through buffers can be used to design low power routers [172].

The impact of the number of VCs on performance varies with the network load.
A lightly loaded network does not need many VCs, whereas a heavily loaded
network does. A virtual channel regulator which dynamically allocates VCs and
buffers according to traffic conditions, thereby reducing total buffering require-
ments and saving area and power, is presented in [117]. Arbitration during VC
allocation is another area of potential optimization. Free virtual channel queues at
each output port can effectively remove the need for VC arbitration by predeter-
mining the order of grants [111].

An efficient algorithm for the buffer size allocation problem is proposed in [72].
The authors derive the blocking rate of each individual channel and then add more

http://dx.doi.org/10.1007/978-94-007-3958-1_6
http://dx.doi.org/10.1007/978-94-007-3958-1_6

2.3 Communication Infrastructure 19

buffering resources only to the highly utilized channels. Similarly, the properties of
on-chip buffers and gate-level area estimates are studied in [143]. Finally,
advanced circuit-level techniques have been employed to achieve high-speed and
low power operation. For instance, the router presented in [170] employs a double
pumped pipeline stage to interleave alternate data bits using dual edge-triggered
flip-flops; this optimization reduces the crossbar area by 50 %. Similarly, serial on-
chip links, partial crossbar activation, and low energy transmission coding tech-
niques are used in the router design presented in [92].

Tools that enable micro-architecture exploration to trade off latency and
bandwidth of the router against power consumption can help NoC designers make
the right design decisions for particular application requirements. Accurate per-
formance analysis of on-chip routers under arbitrary input traffic and methodol-
ogies for choosing the correct design parameters such as optimal channel width,
buffer depth, pipeline depth, number of VCs for high performance and low power
remain open problems. Finally, energy-efficient routers that can interface a variety
of IP cores designed for legacy communication protocols with minimal perfor-
mance overhead is an important challenge.

2.3.3 Network Channel Design

The links interconnecting the network routers also need to be designed efficiently
in order to consume low power and area. The ideal interconnect should be such
that its performance and cost come close to that of just the network channels (or
links), with the performance delivered and power consumed by the network
channel largely determined by the signaling techniques.

Non-uniform channel capacity allocation is presented in [61] where the traffic is
assumed to be heterogeneous and critical delay requirements vary significantly. In
addition to the effects mentioned above, the choice of W has implications on the
wire sizing and spacing, which affect the channel operating frequency. The
bandwidth of a network channel is given by BW = f;, x W. Hence, bandwidth
cannot be optimized by simply considering f,, and W separately. Pileggi et al. [96]
discuss maximizing channel throughput by controlling the size and spacing of
wires, as well as their number. In [78], the authors discuss a framework for
equalized interconnect design for on-chip networks. The proposed approach finds
the best link design for target throughput, power and area constraints, and enables
architectural optimization for energy-efficiency.

It is also of interest to explore different implementation styles for network links.
For instance, delay-insensitive current mode signaling [118] as well as low-swing,
differential signaling techniques [77] can be used to improve performance and
reduce power.

Alternatives to wire channels present interesting opportunities for future
research. For instance, analog-digital hybrid routing approaches [102], optical
links_[120, 149], RE_interconnects_[33] and wireless links [179] have been

20 2 Literature Survey

considered as alternatives to traditional on-chip repeated interconnects, but more
work is needed to make such approaches applicable to real designs.

2.3.4 Floorplanning and Layout Design

Standard tile sizes help controlling the link lengths and ensuring that link delays do
not limit the operating frequency. However, if the size of the network tiles varies
significantly, or irregular topologies are used, the floorplanning step becomes
mandatory. In this case, emphasis needs to be put on the shape and placement of
tiles so as to control the link lengths. Reducing the total interconnect length is also
important for reducing the power dissipation across the links. Another problem is
the placement of special tiles like those connected to peripheral devices (e.g.,
memory controllers, I/0s) so as to minimize the average latency to these devices.
In addition to link length, the goal here is to minimize link area by routing links
over logic or caches as much as possible.

Layout-aware area, power and performance analysis of mesh-based NoCs is
discussed in [130]. Likewise, the authors in [5] present a comparison in terms of
performance, area and power scalability between crossbar designs within a pre-
existing communication fabric and the NoC approach at layout level. Considering
physical layout is also important while solving mapping and topology synthesis
problems. To this end, floorplan aware solutions to these problems are presented in
[112, 163]. We note that the size of the IP cores are assumed to be fixed in the SoC
context. On the other hand, this does not necessarily hold for the CMP context
where one can make trade-off between cache size and interconnect area [89]. For
example, larger private caches can filter traffic and reduce the requirement on the
network, while performance drawback of smaller caches can be mitigated by
higher performance NoCs.

2.3.5 Clocking and Power Distribution

The traditional approach of designing fully synchronous chips with a single global
clock is not attractive anymore due to smaller process geometries, larger wire
delays, higher levels of integration of multiple cores on large dies. The large effort
required for skew control and the significant power consumption of the global
clock call for alternative clocking strategies [12]. Indeed, in addition to multiple
frequencies, different cores can have their own optimal supply voltage to allow for
fine-grain power/performance management.

Strategies such as asynchronous or mesochronous clocking [8, 22, 152] are
alternatives that hold the promise of simplifying timing closure and global clock
distribution. For instance, an approach to minimize the strict skew requirements
without going fully asynchronous using all-in-phase clocking is presented in [153].

2.3 Communication Infrastructure 21

In [22], the authors present a mesochronous clocking strategy that avoids timing
related errors while maintaining globally synchronous system perspective. The 80-
tile teraflop NoC presented in [170] employs phase tolerant mesochronous inter-
faces between the routers with FIFO-based synchronization. Similarly, latency
insensitive or synchronous elastic systems are developed to exploit the inherent
advantages of synchronous design while decoupling the functionality from the
channel delays [29, 38].

The GALS approach has been used with several tile-based multiprocessor
implementations [178]. However, there are extra costs in terms of synchronization
latency and power that need to be considered. Chelcea et al. [35] discuss inter-
facing different clock domains which is essential for implementing globally
asynchronous systems. A systematic comparison between asynchronous and
GALS implementations of an NoC is presented in [152]. The authors conclude that
while the two approaches result in similar silicon area, power consumption and
bandwidth, the asynchronous implementation has a clear advantage in terms of
average packet latency. In [28], the authors propose asynchronous delay insensi-
tive links to support the GALS NoC paradigm. This approach removes the con-
straints on wire propagation delays and enables designing links of any width with
low wire and logic overhead.

Open problems in this area include robust design of clock crossing synchro-
nizers with minimal latency penalty and low power consumption, since locally
generated clocks for GALS SoCs are prone to syncronization failures due to clock
delays [44]. Recent research in resonant clocking shows promise for reducing
power and delivering high performance [32]; however, the use of resonant
clocking with NoCs has yet to be investigated. Also, while controlling NoCs with
multiple voltage-frequency islands has been discussed in [126], techniques that
consider other control objectives such as chip temperature, power consumption,
and nonlinear effects are needed.

2.4 NoC Evaluation and Validation
2.4.1 Analysis and Simulation

Fast and accurate approaches for analyzing critical metrics such as performance,
power consumption or system fault-tolerance are important to guide the design
process. However, in order to be used within an optimization loop or make early
design choices, the analysis techniques need to be tractable and provide mean-
ingful feedback to designers. At later design phases, one can obtain more accurate
estimates through simulation.

Communication latency and network bandwidth are common performance
metrics of interest. While it is relatively easier to find the communication latency
for guaranteed service traffic [43, 108], analyzing the average latency for best

22 2 Literature Survey

effort traffic is a challenging task. Therefore, the average hop count or free packet
delay are commonly used to approximate the average packet latency [113, 164].
Techniques for analyzing the average communication latency in networks are
proposed in [45, 67]. While not directly applicable to NoC performance analysis,
these approaches can be used as a starting point and then account for NoC-specific
constraints, such as application specific traffic and on-chip router parameters.

Analytical power models for early-stage power estimation in NoCs have also
been investigated, starting with [133] which models the power consumed of multi-
chip interconnection networks; this generated follow-up work that specifically
targets on-chip network power dissipation [10, 31, 36, 51, 82, 151].

Performance analysis largely depends on various simplifying assumptions on
the network or traffic characteristics (e.g., uniform traffic vs. bursty traffic) and
typically assumes deterministic routing due to the difficulty in handling the more
general problem. Approaches that relax the Markovian assumption and analytical
power consumption models that accurately account for the application and
architecture characteristics are highly needed [24].

Simulation-based approaches are still popular for architectural exploration of
on-chip networks due to their accuracy, flexibility and ability to run real workloads
[86, 87, 100, 129, 131, 173]

The major issue with simulation-based approaches is the trade-off between the
level of implementation detail and simulation time [74]. Detailed models can
deliver very accurate results, but the simulation time can be prohibitive. Realistic
synthetic trace simulation [101, 171] or hardware acceleration [53] can be used for
improving the simulation speed therefore these are wide open directions for
research.

2.5 Prototyping, Testing and Verification

While simulation offers flexibility for power-performance evaluations under var-
ious network parameters, it still relies on many approximations that may affect the
accuracy of the results. Prototyping can be further used to improve the evaluation
accuracy by bringing the design closer to reality, at the expense of increased
implementation effort and reduced flexibility. Finally, it is also important that
testing and verification must be considered to ensure correctness.

Several concrete NoC architectures have been presented in the literature. In [2],
the authors present the SPIN interconnect architecture and implement a 32-port
network architecture using a 0.13um process. This architecture uses credit-based
flow control to provide QoS.

A flexible FPGA-based NoC design that consists of processors and reconfigu-
rable components is presented in [11]. The FPGA prototype presented in [123]
illustrates the impact of application-specific long-range links on the performance
and energy consumption of 2D mesh networks. The aSoC architecture presented in
[95]_supports compile-time_scheduling _for on-chip communication and provides

2.5 Prototyping, Testing and Verification 23

software-based dynamic routing. The RAW chip [167], attacks the wire-delay
problem by proposing a direct software interface to the physical resources. The
static network used in the RAW chip also enables new application domains.

The 80-core teraflops chip recently introduced by Intel [170] is a good example
of a major NoC prototyping effort. The chip uses a 2D mesh with mesochronous
clocking for a high bandwidth, scalable design. The authors in [92] present a
highly optimized NoC implementation using hierarchical star topology. Finally,
the work presented in [79] addresses both architectural aspects and circuit level
techniques for practical NoC implementation.

We note though that most studies dealing with concrete NoC implementations
lack performance evaluation under real driver applications. This is an important
issue that needs to be addressed in order to bring the NoC prototypes closer to real
applications. Towards this end, the authors in [91] compare and contrast the NoC,
bus- and P2P-based implementations of an MPEG-2 encoder using an FPGA-
based prototype. The advantages of the NoC approach are illustrated in terms of
scalability, throughput, energy consumption and area, both analytically and using
direct measurements on the prototype.

In NoCs, the routers and links have been utilized to test the PEs and the network
itself based on built-in self-test mechanisms [4, 57, 66, 97]. In [4], the authors
propose a scalable test strategy for the routers in an NoC, based on partial scan and
an [EEE 1500-compliant test wrapper. Similarly, the strategy proposed in [66]
exploits the regularity of the switches, and broadcasts the test vectors through the
minimum spanning tree to test the switches concurrently. The authors in [57]
propose testing the routing logic and FIFO buffers recursively by utilizing the NoC
component that already passed the test. The work presented in [97] also considers
the power consumption required for testing purposes.

NoC verification has received less attention compared to other design aspects or
even testing. The NoC verification approach in [55] relies on monitoring the
network traffic and checking special events such as connection opened/closed, data
received by a connection, etc. Likewise, the MAIA framework aims at automated
generation and verification of NoC architectures [128]. More recently, formal
verification of asynchronous NoC architectures is considered in [144], while a
framework for quick formal modeling and verification of communication fabrics is
presented in [34].

References

1. Abad P, Puente V, Gregorio JA, Prieto P (2007) Rotary router: An efficient architecture for
CMP interconnection networks. In: Proceedings of the international symposium on
computer architecture, June 2007

2. Adriahantenaina A, Greiner A (2003) Micro-network for SoC: implementation of a 32-Port
SPIN network. In: Proceedings of design, automation and test in Europe conference, March
2003

24

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

2 Literature Survey

. Al Faruque MA, Ebi T, Henkel J (2007) Run-time adaptive on-chip communication scheme.

In: Proceedings of IEEE/ACM international conference on computer-aided design
(ICCAD’07), San Jose, California, USA, 26-31, 2007

. Amory AM, Briao E, Cota E, Lubaszewski M, Moraes FG (2005) A scalable test strategy

for network-on-chip routers. In: Proceedings of IEEE international test conference, Nov
2005

. Angiolini F, Meloni P, Carta S, Benini L, Raffo L (2006) Contrasting a NoC and a

traditional interconnect fabric with layout awareness. In: Proceedings of design, automation
and test in Europe conference, March 2006

. Angiolini F, Atienza D, Murali S, Benini L, De Micheli G (2006) Reliability support for on-

chip memories using networks-on-chip. In: Proceedings of the international conference on
computer design, Oct 2006

. Ascia G, Catania V, Palesi M (2004) Multi-objective mapping for mesh-based NoC

architectures. In: Proceedings of international conference on hardware-software codesign
and system synthesis, Sept 2004

. Bainbridge W, Furber S (2001) Delay insensitive system-on-chip interconnect using 1-of-4

data encoding. In: Proceedings of international symposium on asynchronous circuits and
systems, March 2001

. Balfour J, Dally WJ (2006) Design tradeoffs for tiled CMP on-chip networks. In:

Proceedings of the international conference on supercomputing, June 2006

Banerjee N, Vellank P, Chatha KS (2004) A power and performance model for network-on-
chip architectures. In: Proceedings of design, automation and test in Europe conference, Feb
2004

Bartic TA et al (2003) Highly scalable network on chip for reconfigurable systems. In:
Proceedings of international symposium system-on-chip, Nov 2003

Beerel P, Roncken ME (Dec. 2007) Low power and energy efficient asynchronous design.
J Low Power Electron 3(3):234-253

Beigne E, Clermidy F, Vivet P, Clouard A, Renaudin M (2005) An asynchronous NOC
architecture providing low latency service and its multi-level design framework. In:
Proceedings of international symposium on asynchronous circuits and systems, May 2005
Beigne E, Clermidy F, Miermont S, Vivet P (2008) Dynamic voltage and frequency scaling
architecture for units integration with a GALS NoC. In: Proceedings of IEEE international
symposium on network on chip, 2008

Benini L, De Micheli G (Jan. 2002) Networks on chips: a new SoC paradigm. IEEE Comput
35(1):70-78

Bertozzi D, Benini L, De Micheli G (2005) Error control schemes for on-chip
communication links: the energy-reliability tradeoff. IEEE Trans Comput Aided Des
Integr Circuits Syst 24(6):818-831

Bertozzi S, Acquaviva A, Bertozzi D, Poggiali A (2006) Supporting task migration in multi-
processor systems-on-chip: a feasibility study. In: Proceedings of design, automation and
test in Europe conference March 2006

Bhojwani P, Lee JD, Mahapatra R (2007) SAPP: scalable and adaptable peak power
management in NoCs. In: Proceedings of international symposium on low power electronic
devices, Aug 2007

Bienia C, Kumar S, Singh JP, Li K (2008) The PARSEC benchmark suite: characterization
and architectural implications. Princeton University Technical Report TR-811-08, Jan 2008
Bjerregaard T, Sparso J (2005) A router architecture for connection-oriented service
guarantees in the MANGO clockless network-on-chip. In: Proceedings of design,
automation and test in Europe conference, March 2005

Bjerregaard T, Mahadevan S (2006) A survey of research and practices of Network-on-chip.
ACM Comput Surv 38(1):1-51

Bjerregaard T, Stensgaard MB, Sparso J (2007) A scalable, timing-safe, network-on-chip
architecture with an integrated clock distribution method. In: Proceedings of design,
automation and. test in Europe conference, April 2007

References 25

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Bogdan P, Dumitras T, Marculescu R (2007) Stochastic communication: a new paradigm
for fault-tolerant networks-on-chip. Hindawi VLSI design, special issue on networks-on-
chip, vol 2007, Hindawi Publishing Corporation

Bogdan P, Marculescu R (2010) Workload characterization and its impact on multicore
platform design.In: Proceedings of 8th IEEE/ACM/IFIP international conference on
hardware/software codesign and system synthesis (CODES/ISSS), 2010

Bolotin E, Cidon I, Ginosar R, Kolodny A (Feb. 2004) QNoC: QoS architecture and design
process for network on chip. J Syst Architecture (EUROMICRO J) 50(2-3):105-128
Bolotin E, Cidon I, Ginosar R, Kolodny A (2007) Routing table minimization for irregular
mesh NoCs. In: Proceedings of design, automation and test in Europe conference, April
2007

van den Brand JW, Ciordas C, Goossens K, Basten T (2007) Congestion-controlled best-
effort communication for networks-on-chip. In: Proceedings of design, automation and test
in Europe conference, April 2007

Campobello G, Castano M, Ciofi C, Mangano D (2006) GALS networks on chip: a new
solution for asynchronous delay-insensitive links. In: Proceedings of design, automation and
test in Europe conference, March 2006

Carloni LP, McMillan KL, Sangiovanni-Vincentelli AL (Sep. 2001) Theory of latency-
insensitive design. IEEE Trans Comput Aided Des Integr Circuits Syst 20(9):1059-1076
Catania V, Holsmark R, Kumar S, Palesi M (2006) A methodology for design of application
specific deadlock-free routing algorithms for NoC systems. In: Proceedings of CODES-
ISSS, Oct 2006

Chan J, Parameswaran S (2005) NoCEE: energy macro-model extraction methodology for
network on chip routers. In: Proceedings the of international conference on computer aided
design, Nov 2005

Chan SC, Shepard KL, Restle PJ (2003) Design of resonant global clock distributions. In:
Proceedings of the international conference on computer design, Oct 2003

Chang MF et al (2008) CMP network-on-chip overlaid with multi-band RF-interconnect. In:
Proceedings of the international symposium on high-performance computer architecture,
Feb 2008

Chatterjee S, Kishinevsky M, Ogras UY (2010) Quick formal modeling of communication
fabrics to enable verification. In: Proceedings of IEEE international high level design
validation and test workshop, 42-49 June 2010

Chelcea T, Nowick SM (2000) A low latency fifo for mixed-clock systems. In: Proceedings
of IEEE computer society workshop on VLSI, April 2000

Chen X, Peh L (2003) Leakage power modeling and optimization in interconnection
networks. In: Proceedings of the international symposium on low power electronics and
design, Aug 2003

Chou C-L, Ogras UY, Marculescu R (2008) Energy- and performance-aware incremental
mapping for networks-on-chip with multiple voltage levels. IEEE Trans Comput Aided Des
Integr Circuits Syst (TCAD) 27(10):1866-1879

Cortadella J, Kishinevsky M, Grundmann B (2006) Synthesis of synchronous elastic
architectures. In: Proceedings of design, automation conference, July 2006

Coskun AK, Rosing TS, Whisnant K (2007) Temperature aware task scheduling in
MPSoCs. In: Proceedings of design, automation and test in Europe conference, April 2007
Dally WJ, Towles B (2004) Principles and practices of interconnection networks. Morgan
Kaufmann Press, San Francisco

Dally WJ, Towles B (2001) Route packets, not wires: on-chip interconnection networks. In:
Proceedings of design automation conference, June 2001

Dally WJ (1992) Virtual-channel flow control. IEEE Trans Parallel Distrib Syst
3(2):194-205

Dielissen J, Radulescu A, Goossens K, Rijpkema E (2003) Concepts and implementation of
the Philips network-on-chip. In: Proceedings of IP-based SoC design, 2003

26

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

2 Literature Survey

Dobkin R, Ginosar R, Sotiriou C (2004) Data synchronization issues in GALS SoCs. In:
Proceedings of international symposium on asynchronous circuits and systems, April 2004
Draper J, Ghosh J (1994) A comprehensive analytical model for wormhole routing in
multicomputer systems. J Parallel Distrib Comput 23(2):202-214

Duato J et al (2005) A new scalable and cost-effective congestion management strategy for
lossless multistage interconnection networks. In: Proceedings of the international
symposium on high-performance computer architecture, Feb 2005

Duato J, Yalamanchili S, Ni L (2002) Interconnection networks: an engineering approach.
Morgan Kaufmann, San Mateo, CA

Enright-Jerger N, Peh L, Lipasti M (2008) Circuit-switched coherence. In: Proceedings of
the international symposium networks-on-chips, May 2008

Enright-Jerger N, Peh L-S, Lipasti M (2008) Virtual circuit tree multicasting: a case of on-
chip hardware multicast support. In: Proceedings of ISCA, June 2008

Enright-Jerger N, Peh L (2009) On-chip networks. Synthesis lecture. Morgan-Claypool
Publishers

Eisley N, Peh L (2004) High-level power analysis for on-chip networks. International
conference on compilers, architectures and synthesis for embedded systems, Sep 2004
Ejlali A, Al-Hashimi BM, Rosinger P, Miremadi SG (2007) Joint consideration of fault-
tolerance, energy-efficiency and performance in on-chip networks. In: Proceedings of
design, automation and test in Europe conference, April 2007

Genko N, De Micheli G, Atienza D, Mendias J, Hermida R, Catthoor F (2005) A complete
network-on-chip emulation framework. In: Proceedings of design, automation and test in
Europe conference, March 2005

Goldfeder CM (2005) Frequency-based code placement for embedded multiprocessors. In:
Proceedings of design automation conference, July 2005

Goossens K et al (2005) A design flow for application-specific networks-on-chip with
guaranteed performance to accelerate SoC design and verification. In: Proceedings of
design, automation and test in Europe conference, March 2005

Gratz P, Kim C, McDonald R, Keckler SW, Burger DC (2006) Implementation and
evaluation of on-chip network architectures. In: Proceedings of international conference on
computer design, Oct 2006

Grecu C, Pande PP, Wang B, Ivanov A, Saleh R (2005) Methodologies and algorithms for
testing switch-based NoC interconnects. In: Proceedings of international symposium on
defect and fault tolerance in VLSI systems, Oct 2005

Grecu C, Ivanov A, Pande P, Jantsch A, Salminen E, Ogras UY, Marculescu R (2007) An
initiative towards open network-on-chip benchmarks. NoC benchmarking white paper,
2007. http://www.ocpip.org/uploads/documents/NoC-Benchmarks-WhitePaper-15.pdf
Gruian F (2001) Hard real-time scheduling for low energy using stochastic data and DVS
processors. In: Proceedings of international symposium on low-power electronics and
design, Aug 2001

Guerrier P, Greiner A (2000) A generic architecture for on-chip packet switched
interconnections. In: Proceedings of design, automation and test in Europe conference,
March 2000

Guz Z, Walter 1, Bolotin E, Cidon I, Ginosar R, Kolodny A (2006) Efficient link capacity
and QoS design for wormhole network-on-chip. In: Proceedings of design, automation and
test in Europe conference, March 2006

Hansson A, Goossens K, Radulescu A (2007) A unified approach to mapping and routing on
a network-on-chip for both best-effort and guaranteed service traffic. Hindawi VLSI Design,
Hindawi Publishing Corporation

Harmanci M, Escudero N, Leblebici Y, lenne P (2005) Quantitative modeling and
comparison of communication schemes to guarantee quality-of-service in networks-on-chip.
In: Proceedings of the international symposium on circuits and systems, May 2005

http://www.ocpip.org/uploads/documents/NoC-Benchmarks-WhitePaper-15.pdf

References 27

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

Hemani A, Jantsch A, Kumar S, Postula A, Oberg J, Millberg M, Lindvist D (2000)
Network on a chip: an architecture for billion transistor era. In: Proceedings of the IEEE
NorChip conference, Nov 2000

Ho WH, Pinkston TM (2003) A methodology for designing efficient on-chip interconnects
on well-behaved communication patterns. In: Proceedings of the international symposium
on high-performance computer, architecture, Feb 2003

Hosseinabady M, Dalirsani A, Navabi Z (2007) Using the inter- and intra-switch regularity
in NoC switch testing. In: Proceedings of design, automation and test in Europe conference,
April 2007

Hu P, Kleinrock L (1997) An analytical model for wormhole routing with finite size input
buffers. 15th International teletraffic congress, June 1997

Hu J, Marculescu R (2003) Energy-aware mapping for tile-based NoC architectures under
performance constraints. In: Proceedings of ASP-DAC, Jan 2003

Hu J, Marculescu R (2005) Communication and task scheduling of application-specific
networks-on-chip. IEE Proc comput Digital Tech 152(5):643-651

Hu J, Marculescu R (2004) DyAD—Smart routing for networks-on-chip. In: Proceedings of
design automation conference, June 2004

Hu J, Marculescu R (2005) Energy- and performance-aware mapping for regular NoC
architectures. IEEE Trans Comput Aided Des Integr Circuits Syst 24(4):551-562

Hu J, Ogras UY, Marculescu R (2006) System-level buffer allocation for application-
specific networks-on-chip router design. IEEE Trans Comput Aided Des Integr Circuits Syst
25(12):2919-2933

Hung W et al (2004) Thermal-aware IP virtualization and placement for Networks-on-Chip
architecture. In: Proceedings of ICCD, 2004

Ibrahim KZ (2005) Correlation between detailed and simplified simulations in studying
multiprocessor architecture. In: Proceedings of international conference on computer
design, Oct 2005

Jantsch A, Lauter R, Vitkowski A (2005) Power analysis of link level and end-to-end data
protection in networks on chip. In: Proceedings of the international symposium on circuits
and systems, May 2005

Jantsch A, Tenhunen H (eds) (2003) Networks-on-Chip. Norwell, MA, Kluwer

Jose AP, Patounakis G, Shepard KL (2005) Near speed-of-light on-chip interconnects using
pulsed current-mode signaling. In: Proceedings of symposium on VLSI Circuits, June 2005
Kim B, Stojanovic V (2007) Equalized interconnects for on-chip networks: modeling and
optmization framework. International conference on computer-aided design, Nov 2007
Kim D, Kim K, Kim J, Lee S, Yoo H (2007) Solutions for real chip implementation issues
of NoC and their application to memory-centric NoC. In: Proceedings of international
symposium on networks-on-chips, May 2007

Kim EJ et al (2003) Energy optimization techniques in cluster interconnects. In:
Proceedings of the international symposium on low power electronics and design, Aug 2003
Kim M, Kim D, Sobelman GE (2005) Adaptive scheduling for CDMA-based networks-on-
chip. In: Proceedings of the IEEE northeast workshop on circuits and systems, May 2005
Kim JS, Taylor MB, Miller J, Wentzlaff D (2003) Energy characterization of a tiled
architecture processor with on-chip networks. In: Proceedings of the international
symposium on low power electronics and design, Aug 2003

Kim J, Nicopoulos CA, Park D, Vijaykrishnan N, Yousif MS, Das CR (2006) A gracefully
degrading and energy-efficient modular router. In: Proceeings of the international
symposium on computer architecture, June 2006

Kim J et al (2007) A novel dimensionally-decomposed router for on-chip communication in
3D architectures. In: Proceedings of the international symposium on computer architecture,
June 2007

Kim J, Dally WIJ, Abts D (2007) Flattened butterfly: a cost-efficient topology for high-radix
networks. In: Proceedings of ISCA, June 2007

28

86

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

2 Literature Survey

. Kogel T et al (2003) A modular simulation framework for architectural exploration of on-
chip interconnection networks. In: Proceedings of international conference on hardware-
software codesign and system, synthesis, Oct 2003

Kogel T, Leupers R, Meyr H (2006) Integrated system-level modeling of network-on-chip
enabled multi-processor platforms. Springer, New York

Kumar A, Peh L, Kundu P, Jha NK (2007) Express virtual channels: Towards the ideal
interconnection fabric. In: Proceedings of the international symposium on computer
architecture, June 2007

Kumar R, Zyuban V, Tullsen DM (2005) Interconnections in multi-core architectures:
understanding mechanisms, overheads and scaling. In: Proceedings of the international
symposium on computer architecture, June 2005

Lahiri K et al (2000) Evaluation of the traffic-performance characteristics of system-on-chip
communication architectures. In: Proceedings of the international conference on VLSI
design, Oct 2000

Lee HG, Chang N, Ogras UY, Marculescu R (2007) On-chip communication architecture
exploration: a quantitative evaluation of point-to-point, bus and network-on-chip
approaches. ACM Trans Des Autom Electron Syst 12(3):1-20

Lee K et al (2004) A 51mW 1.6GHz on-chip network for low-power heterogeneous SoC
platform. International Solid-State Circuits Conference, Feb 2004

Lee JW, Ng A, Asanovic K (2008) Globally-synchronized frames for guaranteed quality of
service in on-chip networks. In: International symposium on computer architecture, 2008

Leung LF, Tsui CY (2006) Optimal link scheduling on improving best-effort and guaranteed
services performance in network-on-chip system. In: Proceedings of design automation
conference, July 2006

Liang J, Laffely A, Srinivasan S, Tessier R (2004) An architecture and compiler for scalable
on-chip communication. IEEE Trans Very Large Scale Integr Syst 12(7):711-726

Lin T, Pileggi LT (2002) Throughput-driven IC communication fabric synthesis. In:
Proceedings of the international conference on computer aided design, 2002

Liu C, Shi J, Cota E, Iyengar V (2005) Power-aware test scheduling in network-on-chip
using variable-rate on-chip clocking. In: Proceedings of VLSI test symposium, May 2005
Lu Z, Liu M, Jantsch A (2007) Layered switching for networks on chip. In: Proceedings of
design automation conference, June 2007

Luo J, Jha NK (2000) Power-conscious joint scheduling of periodic task graphs and
aperiodic tasks in distributed real-time embedded systems. In: Proceedings of international
conference on computer-aided design, Nov 2000

Madsen J, Mahadevan S, Virk K, Gonzales M (2003) Network-on-chip modeling for
system-level multiprocessor simulation. In: Proceedings of the IEEE international real-time
systems symposium, 82-92, Dec 2003

Mahadevan S et al (2005) A network traffic generator model for fast network-on-chip
simulation. In Proceedings of design, automation and test in Europe conference, March
2005

Mak TS, Sedcole P, Cheung PY, Luk W, Lam KP (2007) A hybrid analog-digital routing
network for NoC dynamic routing. In: Proceedings of the international symposium on
networks-on-chip, May 2007

Manolache S, Eles P, Peng Z (2005) Fault and energy-aware communication mapping with
guaranteed latency for applications implemented on NoC. In: Proceedings design
automation conference, July 2005

Marescaux T, Corporaal H (2007) Introducing the superGT network-on-chip. In:
Proceedings of design automation conference, June 2007

Marculescu R, Ogras UY, Peh L, Jerger NE, Hoskote Y (2009) Outstanding research
problems in NoC design: system, microarchitecture, and circuit perspectives. IEEE Trans
Comput Aided Des Integr Circuits Syst 28(1):3-21

References 29

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

Martin S, Flautner K, Mudge T, Blaauw D (2002) Combined dynamic voltage scaling and
adaptive body biasing for lower power microprocessors under dynamic workloads. In:
Proceedings of international conference on computer aided design, Nov 2002

De Micheli G, Benini L (eds) (2006) Networks on chips: technology and tools (systems on
silicon). Morgan Kaufmann, San Francisco

Millberg M, Nilsson E, Thid R, Jantsch A (2004) Guaranteed bandwidth using looped
containers in temporally disjoint networks within the Nostrum network on chip. In:
Proceedings of design, automation and test in Europe conference, Feb 2004

Mishra R et al (2003) Energy aware scheduling for distributed real-time systems.
International parallel and distributed processing symposium, April 2003

Miskov-Zivanov N, Marculescu D (2010) Multiple transient faults in combinational and
sequential circuits: a systematic approach. IEEE Trans CAD Integr Cir Syst
29(10):1614-1627

Mullins R, West A, Moore S (2004) Low-latency virtual-channel routers for on-chip
networks. In: Proceedings of international symposium on computer architecture, June 2004
Murali S et al (2006) Designing application-specific networks on chips with floorplan
information. In: Proceedings of ICCAD, Nov 2006

Murali S, De Micheli G (2004) Bandwidth-constrained mapping of cores onto NoC
architectures. In: Proceedings of design, automation and test in Europe conference, Feb
2004

Murali S, Atienza D, Benini L, De Micheli G (2007) A method for routing packets across
multiple paths in NoCs with in-order delivery and fault-tolerance guarantees. Hindawi VLSI
Des 2007:11

Murali S et al (2005) Analysis of error recovery schemes for networks on chip. IEEE design
and test of computers, 2005

Murali S, Coenen M, Radulescu A, Goossens K, De Micheli G (2006) A methodology for
mapping multiple use-cases onto networks on chips. In: Proceedings of design automation
and test in Europe conference, March 2006

Nicopoulos CA et al (2006) ViChaR: a dynamic virtual channel regulator for network-on-
chip routers. In: Proceedings of the international symposium on microarchitecture, Dec
2006

Nigussie E, Lehtonen T, Tuuna S, Plosila J, Isoaho J (2007) High-performance long NoC
link using delay-insensitive current-mode signaling. Hindawi VLSI Des (special issue on
networks-on-chip) 2007:1-13

Nilsson E, Millberg M, Oberg J, Jantsch A (2003) Load distribution with the proximity
congestion awareness in a network on chip. In: Proceedings of design, automation and test
in Europe conference, March 2003

Connor 10, Gaffiot F (2004) Advanced research in on-chip optical interconnects. In: Piguet
C (ed) Lower Power electronics and design, CRC Press

OCP International Partnership, http://www.ocpip.org/university_research_bibliography.php
Ogras UY, Marculescu R (2005) Energy- and performance-driven NoC communication
architecture synthesis using a decomposition approach. In: Proceedings of design,
automation and test in Europe conference, March 2005

Ogras UY, Marculescu R (2006) It’s a small world after all”: NoC performance
optimization via long-range link insertion. IEEE Trans Very Large Scale Integr Syst Spec
Sect Hardw Softw Codesign Syst Synth 14(7):693-706

Ogras UY, Marculescu R (2006) Prediction-based flow control for network-on-chip traffic.
In: Proceedings of design automation conference, July 2006

Ogras UY, Marculescu R (2006) Communication-based design for nanoscale SoCs. In:
Chen W-K (ed) VLSI handbook, 2nd edn. CRC Book Press

Ogras UY, Marculescu R, Marculescu D, Jung EG (2009) Design and management of
voltage-frequency island partitioned networks-on-chip. IEEE Trans Very Large Scale Integr
Syst 17(3):330-341

http://www.ocpip.org/university_research_bibliography.php

30

127.

128.

129.

130.

131.

132.

134.

135.
136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

2 Literature Survey

On-Chip Networks Bibliography, http://www.cl.cam.ac.uk/ ~rdm34/onChipNetBib/
browser.htm

Ost L, Mello A, Palma J, Moraes F, Calazans N (2005) MAIA: a framework for networks on
chip generation and verification. In: Proceedings of Asia South Pacific design automation
conference, Jan 2005

Palermo G, Silvano C (2004) PIRATE: a framework for power/performance exploration of
network-on-chip architectures. In: Proceedings of international workshop on power and
timing modeling, optimization and simulation, Sept 2004

Pamunuwa D, Oberg J, Zheng LR, Millberg M, Jantsch A, Tenhunen H (2003) Layout,
performance and power trade-offs in mesh-based network-on-chip architectures. In: IFIP
international conference on very large scale integration, Dec 2003

Pande PP, Grecu C, Jones M, Ivanov A, Saleh R (Aug. 2005) Performance evaluation and
design trade-offs for network-on-chip interconnect architectures. IEEE Trans Comput
54(8):1025-1040

Ganguly A et al (2010) Scalable hybrid wireless network-on-chip architectures for multi-
core systems. IEEE Trans Comput 60(10):1485-1502

3. Patel CS, Chai SM, Yalamanchili S, Schimmel DE (1997) Power constrained design of

multiprocessor interconnection networks. In: Proceedings of the international conference on
computer design, Oct 1997

Peh L, Dally WJ (2000) Flit-reservation flow control. In: Proceedings of the international
symposium on high-performance computer architecture, Jan 2000

Peh L, Dally WJ (2001) A delay model for router micro-architectures. IEEE Micro

Pham D et al (2005) The design and implementation of a first-generation CELL processor.
In: Proceedings of the solid-state circuits conference, Feb 2005

Pinto A, Carloni LP, Sangiovanni-Vincentelli AL (2003) Efficient synthesis of networks on
chip. In: Proceedings of international conference on computer design , Oct 2003

Pirretti M, Link GM, Brooks RR, Vijaykrishnan N, Kandemir M, Irwin MJ, (2004) Fault
tolerant algorithms for network-on-chip interconnect. In: Proceedings of IEEE symposium
on VLSI, Feb 2004

Pop P et al (2001) An approach to incremental design of distributed embedded systems. In:
Proceedings of design automation conference, June 2001

Poplavko P, Basten T, Bekooij M, van Meerbergen J, Mesman B (2003) Task-level timing
models for guaranteed performance in multiprocessor networks-on-chip. In: Proceedings of
the international conference on compilers, architecture and synthesis for embedded systems,
2003

Puente V, Gregorio JA, Vallejo F, Beivide R (2004) Immunet: a cheap and robust fault-
tolerant packet routing mechanism. In: Proceedings of the international symposium on
computer, architecture, June 2004

Pullini A, Angiolini F, Bertozzi D, Benini L (2005) Fault tolerance overhead in network-on-
chip flow control schemes. In: Proceedings of symposium on integrated circuits and system
design, Sep 2005

Saastamoinen I, Alho M, Nurmi J (2003) Buffer implementation for proteo network-on-
chip. In: Proceedings of international symposium on circuits and systems, May 2003
Salaun G, Serwe W, Thonnart Y, Vivet P (2007) Formal verification of CHP specifications
with CADP illustration on an asynchronous network-on-chip. In: Proceedings of the IEEE
international symposium on asynchronous circuits and systems, 2007

Scherrer A, Fraboulet A, Risset T (2006) Automatic phase detection for stochastic on-chip
traffic generation. In: Proceedings International Conference on Hardware-Software
Codesign, Oct 2006, pp 88-93

Schmitz MT, Al-Hashimi BM, Eles P (2004) Iterative schedule optimization for voltage
scalable distributed embedded systems. ACM Trans Embedded Comput Syst 3(1):182-217.
doi:10.1145/972627.972636

http://www.cl.cam.ac.uk/~rdm34/onChipNetBib/browser.htm
http://www.cl.cam.ac.uk/~rdm34/onChipNetBib/browser.htm
http://dx.doi.org/10.1145/972627.972636

References 31

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

Seo D, Ali A, Lim W, Rafique N, Thottethodi M (2005) Near-optimal worst-case throughput
routing for two-dimensional mesh networks. In: Proceedings of the international symposium
on computer, architecture, June 2005

Sgroi M et al (2001) Addressing the system-on-a-chip interconnect woes through
communication-based design. In: Proceedings of design automation conference, June 2001
Shacham A, Bergman K, Carloni LP (2007) The case for low-power photonic networks-on-
chip. In: Proceedings of design automation conference, June 2007

Shang L, Peh L, Jha NK (2003) Dynamic voltage scaling with links for power optimization
of interconnection networks. In: Proceedings of the international symposium on high-
performance computer, architecture, Jan 2003

Shang L, Peh L, Kumar A, Jha N K (2004) Thermal modeling, characterization and
management of on-chip networks. In: Proceedings of international symposium on
microarchitecture, Dec 2004

Sheibanyrad A, Panades IM, Greiner A (2007) Systematic comparison between the
asynchronous and the multi-synchronous implementations of a network-on-chip
architecture. In: Proceedings of design, automation and test in Europe conference, April
2007

Shibayama A, Nose K, Torii S, Mizuno M, Edahiro M (2007) Skew-tolerant global
synchronization based on periodically all-in-phase clocking for multi-core soc platforms. In:
Proceedings of symposium on VLSI circuits, June 2007

Shim B, Shanbhag NR (2006) Energy-efficient soft-error tolerant digital signal processing.
IEEE Trans VLSI 14(4):336-348

Shin D, Kim J (2004) Power-aware communication optimization for networks-on-chips with
voltage scalable links. In: Proceedings of international conference on hardware/software
codesign and system synthesis, Sept 2004

Shin D, Kim J, Lee S (2001) Intra-task voltage scheduling for low-energy, hard real-time
applications. IEEE Des Test 18(2):20-30

Shivakumar P, Kistler M, Keckler S, Burger D, Alvisi L (2002) Modeling the effect of
technology trends on soft error rate of combinational logic. In: Proceedings of the
international conference on dependable systems and networks, June 2002

Simunic T, Boyd S (2002) Managing power consumption in networks on chip. In:
Proceedings of design, automation and test in Europe conference, March 2002

Simunic Rosing T, Mihic K, De Micheli G (2007) Power and reliability management of
SOCs. IEEE Trans on VLSI 15:391-403

Soteriou V, Wang H-S, Peh L (2006) A statistical traffic model for on-chip interconnection
networks. In: Proceedings of the international symposium on modeling, analysis and
simulation of computer and telecommunication systems, Sept 2006

Soteriou V, Peh L (2004) Design space exploration of power-aware on/off interconnection
networks. In: Proceedings of the ICCD, Oct 2004

Srinivasan K, Chatha KS (2005) A technique for low energy mapping and routing in
network-on-chip architectures. In: Proceedings of the international symposium on low
power electronics and design, Aug 2005

Srinivasan K, Chatha KS (2006) A low complexity heuristic for design of custom network-
on-chip architectures. In: Proceedings of design, automation and test in Europe conference,
March 2006

Srinivasan K, Chatha KS, Konjevod G (2006) Linear programming based techniques for
synthesis of network-on-chip architectures. IEEE Trans on Very Large Scale Integr Syst
14(4):407-420

Stuijk S, Basten T, Geilen M, Ghamarian AH, Theelen B (2008) Resource-efficient routing
and scheduling of time-constrained streaming communication on networks-on-chip. J Syst
Architect (the EUROMICRO Journal) 54(3—4):411-426

Sun C, Shang L, Dick RP (2007) Three-dimensional multi-processor system-on-chip
thermal optimization. In: Proceedings of international conference on hardware/software
codesign. and. system. synthesis, Oct 2007

32

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

2 Literature Survey

Taylor MB et al (2002) The Raw microprocessor: A computational fabric for software
circuits and general purpose programs. IEEE Micro

Taylor MB, Lee W, Amarasinghe S, Agarwal A (2005) Scalar operand networks. IEEE
Trans Parallel Distrib Syst (special issue on on-chip networks) 16(2):145-162

Towles B, Dally WJ (2002) Worst-case traffic for oblivious routing functions. ACM Symp
Parallel Algori Architect

Vangal S et al (2007) An 80-Tile 1.28TFLOPS Network-on-Chip in 65nm CMOS. In:
Proceedings of solid-state circuits conference, Feb 2007

Varatkar G, Marculescu R (2004) On-chip traffic modeling and synthesis for MPEG-2 video
applications. IEEE Trans VLSI 12(1):108-119

Wang H, Peh L, Malik S (2003) Power-driven design of router microarchitectures in on-
chip networks. In: Proceedings of the international symposium on microarchitecture, Nov
2003

Wang H, Zhu X, Peh L, Malik S (2002) Orion: a power-performance simulator for
interconnection networks. In: Proceedings of annual international symposium on
microarchitecture, Nov 2002

Wolkotte PT, Smit GJM, Kavaldjiev N, Becker JE, Becker J (2005) Energy model of
networks-on-chip and bus. In: Proceedings of the international symposium on system-on-
chip, Nov 2005

F. Worm, P. Ienne, P. Thiran, G. D. Micheli, “A robust selfcalibrating transmission scheme
for on-chip networks. IEEE Trans on Very Large Scale Integr Syst 12(12):1360-1373
Xie Y, Wolf W (2001) Allocation and scheduling of conditional task graph in hardware/
software co-synthesis. In: Proceedings of design, automation and test in Europe conference,
March 2001

Yan S, Lin B (2008) Design of application-specific 3D networks-on-chip architectures. In:
Proceedings of ICCD, 2008

Yu Z, Baas B (2006) Implementing tile-based chip multiprocessors with GALS clocking
styles. In: Proceedings of the international conference on computer design, Oct 2006
Zhao D, Wang Y (2008) SD-MAC: design and synthesis of a hardware-efficient collision-
free QoS-aware MAC protocol for wireless Network-on-Chip. IEEE Trans Comput (TC)
8:1046-1057

Chapter 3
Motivational Example: MPEG-2
Encoder Design

While NoCs gained recently a significant momentum, there are few NoC
implementations of real applications reported to date [1, 5]. In this chapter, we
present an MPEG-2 encoder using the NoC approach and compare it against the
P2P and non-segmented bus-based designs running the same application. The
MPEG-2 encoder has been selected as driver application since it covers a rich class
of multimedia applications where similar considerations apply from an imple-
mentation standpoint. For instance, the basic JPEG, Motion-JPEG and MPEG-1
encoders, can all be implemented using a similar architecture and set of IP cores.
We also note that, due to the small number of point-to-point connections in its
architecture, the MPEG-2 encoder lends itself to a P2P implementation, as shown
in Fig. 3.1. It should be noted that for many other applications where a subset of
cores communicate with all the remaining nodes, the overhead incurred by the
dedicated channels of the P2P architecture is significant. Similarly, the perfor-
mance of bus architectures drops quickly as the number of communicating cores in
the design increases. As a result, the conclusions derived herein with respect to the
benefits of the NoC architecture compared to the P2P and bus architecture are
rather conservative, so they shed light on a wide range of practical scenarios.

3.1 Overall Approach

After the computational resources that are needed for the implementation of the
MPEG-2 encoder (e.g. discrete cosine transformation, motion estimation and
variable length encoding modules) are implemented using Verilog HDL, they are
connected to each other using P2P links, a bus, and an NoC architecture, as shown
in Figs. 3.1 and 3.2. For the bus and NoC implementations, we also design a bus
control unit (BCU) and an on-chip router, respectively. Once the designs are
complete, they are evaluated in terms of area, performance, energy and power
consumption. In addition to these standard metrics, we are also interested in
analyzing the scalability of these communication architectures. For this reason, we
increase the parallelism of the encoder by duplicating the motion estimation (ME)

U. Y. Ogras and R. Marculescu, Modeling, Analysis and Optimization 33
of Network-on-Chip Communication Architéctures, Lecture Notes

in Electrical Engineering 184, DOL: 10.1007/978-94-007-3958-1_3,

© Springer Science+Business Media New York 2013

34 3 Motivational Example: MPEG-2 Encoder Design

Input
Buffer

VLE &
Out. Buffer

Buffer
(b)

Fig. 3.1 MPEG-2 encoder implementation using a point-to-point and b network-on-chip
communication architectures

implementation using bus

Fig. 3.2 MPEG-2 encoder [
communication architecture

Input DCT & (Inv Quant.| | Bus Cont.
Buffer Quant. L & IDCT Unit

—- 1t_Lt_’

Frame Motion VLE &
Buffer Comp. | (Out. Buffer

module, which is the true performance bottleneck for this multimedia application.
This way, we increase the number of cores in the design and perform evaluations
with 1, 2, 4 and 8 motion estimation modules'; we refer to the design with one ME
as the baseline implementation. Designs with 1 and 2 ME modules are imple-
mented and evaluated using an FPGA prototype based on the Xilinx XC2V3000
platform [2]. However, the designs with 4 and 8 ME modules do not fit to this
FPGA due to their large size. Therefore, the area, performance and energy con-
sumption of these designs are found analytically by using the area, performance
and energy consumption of individual components. Implementation details can be
found in [2].

3.2 Evaluation of the NoC Architecture

3.2.1 Area Evaluation

The area of the P2P, bus and NoC-based implementations with 1, 2, 4, 8 ME
modules is shown in Fig. 3.3a. As we can see, the P2P implementation is

' This corresponds to having MPEG-2 encoder implementations with a total of 7, 8, 10, and 14
cores,. respectively.

3.2 Evaluation of the NoC Architecture 35

(a)ZSK 7| mp2pP EBus ENoC | (b)so 1D P2P B NoC M Bus
» 20K = g 400 1
8 ©
= R = .
= 15K £ 300
5 = £
= 10K 7 o 200 1
5K * 100 1
0- 0
1 2 4 8 1 2 4 8
Degree of parallelism Degree of parallelism

Fig. 3.3 a Area and b throughput comparisons of the MPEG-2 encoder implemented using P2P,
bus and NoC architectures for increasing level of parallelism

consistently larger than the bus and NoC implementations. More importantly, the
area of the P2P implementation scales considerably worse. For example, the P2P
version is more than 24.7 % larger than the NoC version for the implementation
with 8 ME modules, while the difference in performance is only about 4.4 %. This
shows that P2P architectures scale poorly in terms of area, and they are not suitable
for designs involving a large number of cores. On the other hand, the NoC-based
implementations scale as well as the bus-based implementation with the increasing
number of cores. For instance, the NoC version has about 4.6 % overhead com-
pared to the bus version even for the 8 ME implementation.

3.2.2 Performance Evaluation

The throughput of the P2P, bus and NoC-based implementations as a function of
number of ME modules in the design is plotted in Fig. 3.3b. The throughput of the
P2P implementation is 47.0 Frames/sec for a CIF frame of size 352 x 288. The
throughput of the corresponding bus and NoC implementations is 38.9 Frame/sec
and 46.4 Frames/sec, respectively. We note that, the NoC implementation achieves
a throughput very close to the P2P version which provides the utmost communi-
cation performance. The throughput of all implementations as a function of
increasing number of ME modules is shown in Fig. 3.3b. We observe that the NoC
implementation scales as well as the P2P implementation in terms of throughput,
while the bus-based implementation scales poorly. However, one should note that
beyond a certain degree of parallelism, the communication itself becomes the
bottleneck and therefore the NoC performance saturates. It is possible to eventu-
ally stretch the performance beyond this point by customizing the network
topology [3, 4].

36 3 Motivational Example: MPEG-2 Encoder Design

3 P2P (Energy) HH Bus (Energy) B NOC (Energy)
-6~ P2P (Percentage) - Bus (Percentage) -~ NOC (Percentage)

[P2P (Power) B Bus (Power) B NOC (Power)
—o- P2P (Percentage) - Bus (Percentage) -8~ NOC (Percentage)

@) 100 //" s (b)7:000 “
) < 6,000 50 ®
S S
5 80 —— S0 S E o o
= / 2 B 749 2
E 60 - 30 % §4,000 30 B
= il o
gy 40+ 205 5200 20 &
5 A 2,000
(=} 4 L
g 20 10 1,000 1 10
i 0 4 O
0 > 4 s O T T T T
Degree of parallelism Degree of parallelism

Fig. 3.4 a Energy and b power consumption (mW@ 100 MHz) as a function of the degree of
parallelism for P2P, bus and NoC implementations

3.2.3 Energy Consumption Evaluation

Figure 3.4a shows that the energy consumption for the NoC implementation is
consistently smaller than the P2P and bus counterparts for different levels of
parallelism. The P2P implementation has larger energy consumption, since it has
more interfaces and links than the NoC counterpart. On the other hand, the energy
consumption of the bus-based implementation is large due to the longer time
needed to encode real data (i.e. smaller throughput compared to the P2P and NoC-
based implementations). The longer encoding time of the bus-based implemen-
tation also results in a smaller power consumption, as shown in Fig. 3.4b.

On the other hand, the power consumption of the P2P implementation is larger
than the power consumed by the NoC even for the baseline implementation.
Furthermore, we observe that the NoC design scales better in terms of power
consumption compared to the P2P implementation, as shown in Fig. 3.4b. The
power consumption of the P2P architecture scales poorly as the degree of paral-
lelism increases, since the P2P implementation requires a significantly larger
number of additional links and network interfaces to accommodate the addition of
extra ME modules. More specifically, the NoC-based implementation consumes up
to 42 % less power compared to the P2P implementation for an implementation
involving 8 ME modules. This corresponds to about 17 % of the total power
consumption which is quite important when optimizing portable systems.

3.3 Overall Comparison

Even for the baseline implementation, the NoC architecture performs as well as the
P2P architecture, while having a smaller area overhead. At the same time, the real
benefits of using the NoC approach are observed when we analyze the scalability

3.3 Overall Comparison 37

of these designs as a function of the number of cores. More specifically, when the
motion estimation module is replicated, the area occupied by the P2P imple-
mentation grows abruptly. The bus architecture, on the other hand, scales well in
terms of area, but it suffers from a energy/performance standpoint. Unlike both of
these approaches, the NoC implementation incurs only a modest area overhead,
while keeping up with the performance increase achieved by the P2P implemen-
tation. Finally, the NoC-based implementation has also better scalability in terms
of energy consumption compared to the P2P and bus-based implementations.

Based on analytical estimations and direct measurements on the FPGA proto-
type, we observe the following:

e The performance of the NoC-based implementation is very close to that of the
P2P for the same application. Moreover, the scalability analysis based on
duplicating the bottleneck module in the MPEG-2 design shows that the per-
formance of the NoC design scales as well as the P2P, while the bus-based
implementation scales much more poorly.

e In terms of area, the NoC scales as well as the bus-based implementation.
However, the P2P implementation does not scale well due to the overhead
involved in redesigning the interfaces. Moreover, the design effort for adding
new cores to an existing design is much smaller for the NoC case as compared to
P2P.

e Finally, the energy consumption of the NoC-based implementation is smaller
than both P2P and bus-based implementations and it scales much better with the
number of extra ME modules added to the base design.

In summary, the NoC design scales very well in terms of area, performance,
power/energy consumption and overall design effort, while the P2P architecture
scales poorly on all accounts except performance. By contrast, the bus-based
architecture scales poorly in terms of performance and energy consumption.

References

1. Howard J et al (2010) A 48-Core IA-32 message-passing processor with DVES in 45 nm
CMOS. In: Proceedings of the IEEE international solid-state circuits conference, February
2010

2. Lee HG, Chang N, Ogras UY, Marculescu R (2007) On-chip communication architecture
exploration: a quantitative evaluation of point-to-point, bus and network-on-chip approaches.
ACM Trans Des Autom Electron Syst 12(3)

3. Ogras UY, Marculescu R (2005) Energy- and performance-driven NoC communication
architecture synthesis using a decomposition approach. In: Proceedings of design automation
and test in Europe conference, March 2005

4. Srinivasan K, Chatha KS, Konjevod G (2006) Linear programming based techniques for
synthesis of network-on-chip architectures. IEEE Trans Very Large Scale Integr Syst
14(4):407-420

5. Vangal S et al (2007) An 80-Tile 1.28TFLOPS network-on-chip in 65 nm CMOS. In:
Proceedings of solid-state circuits conference, February 2007

Chapter 4
Target NoC Platform

This chapter provides an overview of the network-on-chip architecture and
application models utilized in this book. We first describe the target NoC platform
and list our basic assumptions. Then, we present the NoC architecture and
application models employed throughout the book. Finally, we conclude this
chapter by discussing the technology implications on networks-on-chip design.

4.1 Basic Assumptions

The nodes in the network are composed of a processing core and a router, as
shown in Fig. 4.1. The routers are connected to the neighboring routers and to the
local processing/storage element (PE hereafter) via bi-directional point-to-point
links. The on-chip routers are likely to be used with many existing IP cores which
have been designed with certain protocols in mind (e.g., CoreConnect, AMBA). In
order to proliferate the utilization of NoC architectures, wrappers which can
efficiently interface the existing bus-based IPs and the NoC communication
infrastructure are required. Therefore, communication interfaces (or wrappers) that
interface the router with the processing cores and perform packetization/depack-
etization operations are utilized whenever necessary.

The routers are composed of input/output buffers, switching fabric and control
logic, as depicted in Fig. 4.1. The buffers can be implemented using either reg-
isters or SRAMs for energy efficiency. The buffers typically hold a fraction of a
packet. In a P-port router P X P crossbar switch serves as the switching fabric in
the router. The control logic, which consists of routing engine, virtual channel
allocation module and arbiter determines which output link the packet should be
delivered to based on a routing algorithm. Different network topologies such as
mesh, torus or customized can be realized by interconnecting the routers according
to a given rule.

U. Y. Ogras and R. Marculescu, Modeling, Analysis and Optimization 39
of Network-on-Chip Communication Architéctures, Lecture Notes

in Electrical Engineering 184, DOL: 10.1007/978-94-007-3958-1_4,

© Springer Science+Business Media New York 2013

40 4 Target NoC Platform

Port 1
Processing or Output Input I
storage node ’ v Controller] | Controller
’ -
w— Network 7 lg E'.l I 5 §
channel £ £
’ 5 8
Regular - Routin ~
|] outing +
Router s Table 1%

s
s
7’
7/
rd
IEETTE]
wdig
Input
Control

Input Quiput
Controller] Controller

Port 3

Fig. 4.1 Regular tile-based networks-on-chip architecture and a simple on-chip router with four
ports

4.1.1 Routing Algorithm

The routing algorithm determines how the packets are routed in the network
between the source-destination pairs. The objective of routing algorithms can be
selecting the minimal routing paths, avoiding congestion (while producing mini-
mal paths or dropping minimal path requirement), avoiding deadlock, maintaining
uniform power consumption across routers, improving fault-tolerance, etc. In
general, routing algorithms are classified as adaptive and oblivious algorithms [6,
10]. Adaptive routing algorithms use the state of the network such as congestion in
the routers while making the routing decision. On the other hand, the routing
decision is independent of the network state in oblivious routing. For this type of
routing, the routing path can be completely determined by the source and desti-
nation addresses (deterministic routing [10, 19]) or it can be determined by
probabilistic rule (probabilistic routing [3]) to improve fault-tolerance.

Implementation complexity and performance requirements are two major
concerns in selecting the routing strategy. While adaptive routing provides better
throughput and lower latency by allowing alternate paths based on the network
congestion [13], oblivious routing requires less resources, which is critical for NoCs.
However, for application-specific NoCs, the routing algorithm can be selected to
match the application traffic pattern [14]. Finally, for ordered packet arrival,
freedom from deadlock and livelock can be easily guaranteed by deterministic
algorithms. Therefore, unless otherwise specified, we assume deterministic,
minimal and deadlock-free routing throughout the book.

4.1.2 Switching Technique

The switching technique determines when the routing decisions are made, how the
switches inside the routers are set/reset, and how the packets are transferred along
the switches. Switching techniques are usually categorized as packet switching

4.1 Basic Assumptions 41

(store-and-forward, virtual cut-through and wormhole switching) and circuit
switching [10].

In store-and-forward switching, which is the dominant choice in internet, the
entire packet is stored at the intermediate nodes. The packet is forwarded to one of
the neighboring nodes, when the output channel is available and the chosen
neighboring node has enough empty buffering space available to hold the entire
packet. Storing the entire packet requires large buffering space and causes large
packet latency. Virtual cut-through switching solves the latency problem in store-
and-forward switching by forwarding the packet as soon as the desired output
channel becomes available. Hence, a packet is stored at an intermediate node only if
the outgoing channel is busy. However, virtual cut-through switching still requires
large buffering space at each node, since the entire packet needs to be stored in case
of congestion. For wormhole switching, a packet is divided into flow control digits
called flits. The first flit (called the header flit) contains all the routing information
and leads the packet through the network, while the remaining flits follow the
header flit in a pipelined fashion. When the header flit is blocked due to congestion
in the network, all of the following flits wait at their current locations. Therefore,
the need for large buffers at each router is eliminated. At the same time, wormhole
routing achieves small routing latency similar to virtual cut-through routing. The
major drawback of wormhole routing is the chained blocking which occurs as a
result of the multiple occupied channels due to the blocked header flits. However,
this problem can be alleviated using virtual channels [8].

In circuit switching, a physical circuit is set-up between the source and desti-
nation nodes during the circuit establishment phase unlike the packet switching
techniques. Then, all the packets that belong to that stream are transmitted along
this circuit without any arbitration overhead and with minimal buffering.

Due to the limited buffering resources available and the stringent latency
requirements for typical NoC applications, we assume wormhole-based routing
which is the commonly preferred technique in NoCs [2, 4, 7, 14, 18]. Wormhole
routing is usually preferred to circuit switching in data networks due to the poor
performance of the latter under dynamic traffic. However, for application-specific
NoCs, this does not represent a major handicap. Moreover, guaranteed service
operation, as required by some applications, is relatively easier to satisfy by using
circuit switching [9] as opposed to wormhole routing [2, 4]. Therefore, circuit
switching is a promising alternative, despite its implementation complexity and
static nature. It remains to be seen whether or not a particular switching technique,
or a hybrid combination [16], is more advantageous.

4.2 NoC Architecture Modeling

In this section, we formally define a 3D design space that involves issues related to
communication infrastructure synthesis, communication paradigm selection and
application mapping optimization. Having such a unifying formalism available can

42 4 Target NoC Platform

not only catalyze the research towards improving the already existing solutions,
but also inspire new solutions to many outstanding research problems in NoC
design.

Definition An NoC architecture can be uniquely described by the triple
Arch(T (R, Ch), Pg,Q(C)), where:

o The labeled graph T(R, Ch) represents the network topology. The routers and
channels in the network are given by the sets R and Ch, respectively, as follows:
Y(ch) € Ch, w(Ch) gives the bandwidth of channel c#;
Vr € R, I(d,r) gives the buffer size (depth) of channel d, located at router r;
Vr € R, Pos(r) gives the xy coordinates of router r in the chip floorplan;
{Pgr(r,i,j)|i,j,r € R} defines the routing policy Pg at router r, for any source
router i, destination router j, while considering a particular switching technique;
e Q) : C — R is a function that maps each vertex ¢; € C in the APCG to a router in
R. For direct topologies, is a bijective function, i.e., every router is connected
to a core, while in indirect topologies a router may be connected only to other
routers.

We can conceive the choices of designing NoCs as representing a 3D design space,
where each component of the triple Arch(T (R, Ch), Pg, Q(C)) defines a separate
dimension of the design space.' Using this type of concise representation has the
advantage of keeping the discussion simple and precise.

Finally, besides the obvious functional constraints like correctness, freedom
from deadlock, etc., there are a number of performance and cost metrics that the
design techniques developed for NoCs should comply with. We list below a non-
exhaustive list of such metrics:

Performance Metrics ={average/maximum packet latency, bisection
bandwidth, network throughput, QoS} (4.1)

Cost Metrics ={average /peak energy/power consumption, network

area overhead, total area, average/peak temperature} — (4.2)

This formalism helps to identify and formulate key research problems in NoC
design in a standard way, as illustrated in the subsequent sections. For instance,
topology synthesis, buffer size allocation, channel width sizing, and floorplanning
problems need to be solved within the first dimension, i.e. communication infra-
structure design. A more detailed description of the key research problems along
each of these dimensions can be found in [17].

' We note that similar definitions have been used by the EDA research community [11, 14, 18,
22].

4.3 Application Modeling 43

4.3 Application Modeling

In this section, we present a unified application model utilized throughout the
book. At different stages in the design process (e.g. whether or not the application
has been mapped, scheduled, etc.), the target application can be specified at dif-
ferent levels of granularity. In this book, we describe the target application either
by a communication task graph (CTG) [12] or application characterization graph
(APCG) [14]. The nodes of a CTG are the tasks that define a particular application,
while its edges specify the control and data dependencies. A CTG is used to model
an application before the tasks are bound to a particular IP core that will run the
task. When the tasks are already scheduled to run on certain IP cores, then we
utilize APCG to model the target application. Consequently, an CTG models the
target application at a finer level of granularity. Formal definitions of CTG and
APCG are given below.

Definition A communication task graph (CTG) G' = G'(S7,C) is a directed
acyclic graph, where each vertex represents a computational module of the
application referred to as a task #; € S7. Each ¢; is annotated with relevant infor-
mation such as the execution time on each type of PE, energy consumption (ej)
when executed on the jth PE, task deadlines (d(f;)), etc. Each directed arc ¢;; € C
characterizes the communication (or control) dependency between tasks #; and ;.
Each C;; has associated v(C;;), which stands for the communication volume (bits)

exchanged between cores ¢; and c;.

Definition An application characterization graph (APCG) G = G(C,A) is a
directed graph, where each vertex ¢; € C represents an IP core, and each directed
arc a;j € A characterizes the communication from vertex c; to vertex ¢;. Each a;;
can be tagged with application-specific information (e.g., communication volume
v(a;j) between vertices ¢; and c;), and specific design constraints (e.g., commu-
nication bandwidth b(a;;) and latency requirements of the application, etc.).

4.4 Technology Implications on Networks-on-Chip
Platforms

Technology has an important impact on area, power consumption and performance
of the NoCs. For instance, in [21], the authors investigate the impact of the
technology on the choice of different design parameters such the network topol-
ogy, number of virtual channels and buffer sizes. For this reason, this section
addresses the implications of the particular technology used to implement on the
NoC design. To this end, we will use the 80-core teraflops (tera floating point

44 4 Target NoC Platform

Table 4.1 Technological predictions for high performance Microprocessor (MPU) and ASIC
product generations by ITRS report 2005 edition [20]

Technology node 90 nm 65 nm 50 nm 36 nm 25 nm
(2005) (2007) (2009) (2012) (2015)
MPU chip size (mm?) 310 310 310 310 310
ASIC chip size (mm?) 858 858 858 858 858
MPU / ASIC Mtransistor/cm? 225 357 566 1133 2265
Max. on-chip frequency (MHz) 5,204 9,285 12,369 20,065 33,403
Power supply voltage V34(V) 1.1 1.1 1.0 0.9 0.8
Allowable max. power? (W) 167 189 198 198 198
Max. power for hand-held systems (W) 2.8 3 3 3 3
Number of metal layers-minimumb 1 11 12 12 13
Number of metal layers-maximum 15 15 16 16 17
Metal 1 wiring pitch (nm) 180 136 104 72 50
Metal 1 RC delay (ps) (for 1 mm 440 767 1388 2857 5951
minimum pitch Cu wire)
Minimum global wire pitch (nm) 300 210 156 108 75
Global wire RC delay (ps) (for 1 mm 111 209 410 787 896

minimum pitch Cu wire)

4 According to ITRS, power will be limited by system level cooling and test constraints rather
than packaging
DThe minimum number of wiring levels represents the interconnect metal levels, and the max-
imum number of interconnect wiring levels includes the minimum number of wiring levels plus
additional optional levels required for power, ground, signal conditioning, and integrated passives
(i.e., capacitors)

operations per second) research chip introduced by Intel as a basis to predict how
NoCs will look like in the future technology nodes [23]. There are two reasons for
this choice. First, this chip is one of the largest NoC prototypes to date. Second, its
specifications which are publicly available can be used together with the ITRS
roadmap [20] to study technological implications on NoC research.

Intel’s 80-core chip is implemented using 65 nm technology, and it is arranged
as a 10 x 8 2D mesh network consisting of 3 mm? tiles, as shown in Fig. 4.1. The
chip has a total die area of 275 mm? which is close to the maximum chip size
(310mm?) predicted by ITRS through 2015, as shown in the second row of
Table 4.1. The chip has 100M transistors; this is smaller than the current state-of-
the art processors (e.g. Intel Core 2Duo processor contains 291M transistors [15])
and ITRS projections, which are shown in the fourth row of Table 4.1. When the
chip is powered at 1.2 V supply voltage, the maximum frequency is 4 GHz. This
results in 256 GB/s bisection bandwidth?, 1.28 TFLOPS peak performance and
181 W power consumption. As it can be seen from the ITRS predictions (see
Table 4.1, row 6), this power consumption is almost the maximum allowed value.

2 Bisection bandwidth is defined as the total bandwidth across smallest cut that divides network
into.two.equal halves [6].

4.4 Technology Implications on Networks-on-Chip Platforms 45

When the supply voltage is decreased to 1.0 V, the power consumption reduces to
98 W. At the same time, the maximum clock frequency and total performance
drop to 3.13 GHz and 1.0 TFLOPS, respectively. Finally, a 0.6 V supply voltage
results in 11 W power consumption with a total performance of 310 GFLOPS.

Having reviewed the specifications of the 80-core intel chip, we will project this
design into future technology nodes using the ITRS roadmap predictions sum-
marized in Table 4.1. According to the ITRS roadmap the chip size remains
constant, while the feature sizes shrink. So, we will assume that 275 mm? chip size
does not change. Based on this assumption, we consider the following two
scenarios:

Scenario 1: First, we assume that the tile sizes remain the same over different
technology nodes, i.e. the tiles in the network remain 3 mm?. This choice still
implies 80-core networks, but with more complex tiles. More specifically, at
50 nm technology node, the tiles could have 158M transistors (as opposed to
100M transistors). Under this scenario, the tiles become more complex as we move
to new technology nodes, while the network size and the lengths of the network
links remain the same. Combined with the scaling in the width and pitch of the
global wires (see last two rows of Table 4.1), this will result in larger network
bandwidth, hence performance, for each new technology. At the same time, due to
the increase in the tile complexity and increased operating frequency, the power
consumption will go up. According to ITRS roadmap, it will not be sufficient to
reduce the supply voltage to meet the power constraints as the technology changes.
On the contrary, system level approaches that are coupled with the low level
techniques (similar to our voltage-frequency island synthesis approach presented
in Chap. 8) are vital for the successful realization of future NoCs (Fig. 4.2).

Scenario 2: In the second scenario, we assume that the tile complexity in terms
of number of transistors remains the same. This will be the case when the IP cores
in the tiles are reused in the new design. Under this scenario, the number of tiles in
the network will grow, since the total area remains the same and each tile can fit
into a smaller area. More specifically, there would be 126 tiles at 50 nm, 254 nodes
at 36 nm, and so on3, as illustrated in Fig. 4.1. Under this scenario, the lengths of
the network links scale down as the tile dimensions. This has two consequences
with opposite effects on network performance. On one hand, single hop commu-
nication between neighboring nodes will be faster; on the other hand average hop
distance in the network will increase. As a result, localized communication
becomes faster, while communication across different parts of the network slows
down. At this point, we note that long-range links that can connect remotely
situated nodes (see Chap. 6) becomes a powerful tool to improve network
performance.* We also note that the overhead of the network remains about the
same, since the reduction in the router area is compensated by the increased

> We consider two corner cases in this section. In reality, we expect that both average tile
complexity and network size will increase.

*_We discuss.the use.and implementation.of long-range links in Chap. 6

http://dx.doi.org/10.1007/978-94-007-3958-1_8
http://dx.doi.org/10.1007/978-94-007-3958-1_6
http://dx.doi.org/10.1007/978-94-007-3958-1_6

IS
[=)}

4 Target NoC Platform

| | e e
| o o
| |
| o e
| o o o
| |
| o e e o
| oy e o
| o o
| |y

The original 10 x8 network. Each
tile is 3 mm~ and the total area is
275 mm>.

[S]

First scenario: The design is
mapped to a smaller technology
node. Individual tiles and the
network have the same area,
but each tile is more complex.

Second scenario: Individual tiles
have the same complexity as the
original design. Due to shrinking
device sizes, the resulting
network has more tiles.

Fig. 4.2 Illustration of the mapping the 80-core design to smaller technology nodes

number of routers. Finally, power consumption will go up as the technology scales
down, similar to the previous scenario.

To sum up, the NoC design becomes more challenging with the introduction of
each new technology node. Besides the complexity of dealing with a large scale
network, the interplay between system level decisions such as topology selection
and physical implementation parameters makes NoC design a challenging task.
Indeed, the Design Chapter of the ITRS roadmap lists “design methodology” as
one of the key technology challenges [20]. According to this report, each tech-
nology generation requires designers to consider more issues; hence, new analysis
methods and tools must be developed to evaluate new phenomena and aid the
designer in making critical design decisions. Our NoC performance analysis
technique presented in Chap. 5 addresses exactly this need. Through real design
case studies and comparison with cycle-accurate simulations, we demonstrate that
this technique can indeed provide guidance in the huge design space. ITRS report
further states that it becomes increasingly difficult to determine the most effective
sequence in which design decisions made such that the iterations are minimized.
To this end, we believe that the design methodologies and NoC analysis tools we
present in the subsequent chapters will foster the design and implementation of
large-scale NoCs. Finally, the advent of FPGAs with as many transistors as state-
of-the-art processors and multi-FPGA development platforms, such as the BEE2
platform [5], will play an important role in multi processor research [1]. Therefore,
the FPGA prototypes presented in this book establish an important step towards
systematic evaluation of NoCs through prototyping.

References

1. Arvind AK et al (2005) RAMP: Research accelerator for multiple processors—A community
vision for a shared experimental parallel HW/SW platform, RAMP Technical report.
http://ramp.eecs.berkeley.edu/Publications/ramp-nsf2005.pdf

http://dx.doi.org/10.1007/978-94-007-3958-1_5
http://ramp.eecs.berkeley.edu/Publications/ramp-nsf2005.pdf

References 47

2.

10.

11.

12.

13.

14.

15.

17.

18.

19.

20.

21.

22.

23.

Bjerregaard T, Sparso J (2005) A router architecture for connection-oriented service
guarantees in the MANGO clockless network-on-chip. In: Proceedings of design, automation
and test in Europe conference, March 2005

. Bogdan P, Dumitras T, Marculescu R (2007) Stochastic communication: A new paradigm for

fault-tolerant networks-on-chip. Hindawi VLSI design, special issue on networks-on-chip,
vol 2007, Hindawi Publishing Corporation

. Bogdan P, Marculescu R (2010) Workload characterization and its impact on multicore

platform design. In: Proceedings of the 8th IEEE/ACM/IFIP international conference on
hardware/software codesign and system synthesis (CODES/ISSS), 2010

. Chang C, Wawrzynek J, Brodersen RW (2005) BEE2: A high-end reconfigurable computing

system. IEEE Des Test Comput 22(2):114-125

. Dally WIJ, Towles B (2004) Principles and practices of interconnection networks. Morgan

Kaufmann Press, San Francisco

. Dally WJ, Towles B (2001) Route packets, not wires: On-chip interconnection networks. In:

Proceedings of design automation conference, June 2001

. Dally W1J (1992) Virtual-channel flow control. IEEE Trans Parallel Distrib Syst 3(2):194-205
. Dielissen J, Radulescu A, Goossens K, Rijpkema E (2003) Concepts and implementation of

the Philips network-on-chip. IP-based SoC Design, 2003

Duato J, Yalamanchili S, Ni L (2002) Interconnection networks: an engineering approach.
Morgan Kaufmann, San Mateo, CA

Hansson A, Goossens K, Radulescu A (2007) A unified approach to mapping and routing on
a network-on-chip for both best-effort and guaranteed service traffic. Hindawi VLSI Design,
Hindawi Publishing Corporation

Hu J, Marculescu R (2005) Communication and task scheduling of application-specific
networks-on-chip. IEE Proc Comput Digital Tech 152(5):643-651

Hu J, Marculescu R (2004) DyAD—Smart routing for networks-on-chip. In: Proceedings of
design automation conference, June 2004

Hu J, Marculescu R (April 2005) Energy- and performance-aware mapping for regular NoC
architectures. IEEE Trans Comput Aided Des Integr Circuits Syst 24(4):551-562

Intel architecture, http://www.intel.com/pressroom/kits/core2duo/pdf/microprocessor_
timeline.pdf

. Lee K et al (2004) A 51mW 1.6GHz on-chip network for low-power heterogeneous SoC

platform. International solid-state circuits conference, Feb 2004

Marculescu R, Ogras UY, Peh L, Jerger NE, Hoskote Y (Jan. 2009) Outstanding research
problems in NoC design: system, microarchitecture, and circuit perspectives. IEEE Trans
Comput Aided Des Integr Circuits Syst 28(1):3-21

Murali S, De Micheli G (2004) Bandwidth-constrained mapping of cores onto NoC
architectures. In: Proceedings of design, automation and test in Europe conference, Feb 2004
Ni LM, McKinley PK (Feb. 1993) A survey of wormhole routing techniques in direct
networks. IEEE Comput 26(2):62-76

Semiconductor Association (2006) The international technology roadmap for semiconductors
(ATRS)

Soteriou V, Eisley N, Wang H, Li B, Peh L (2006) Polaris: a system-level roadmap for on-
chip interconnection networks. In: Proceedings of international conference on computer
design, Oct 2006

Srinivasan K, Chatha KS, Konjevod G (April 2006) Linear programming based techniques
for synthesis of network-on-chip architectures. IEEE Trans Very Large Scale Integr VLSI
Syst 14(4):407-420

Vangal S et al (2007) An 80-Tile 1.28TFLOPS Network-on-Chip in 65nm CMOS. In:
Proceedings of solid-state circuits conference, Feb 2007

http://www.intel.com/pressroom/kits/core2duo/pdf/microprocessor_timeline.pdf
http://www.intel.com/pressroom/kits/core2duo/pdf/microprocessor_timeline.pdf

Chapter 5
NoC Performance Analysis

Traditionally, performance evaluation of networks-on-chip (NoC) is largely based
on simulation which, besides being extremely slow, provides little insight on how
different design parameters can affect the actual network performance. Therefore,
it is practically impossible to use simulation for optimization purposes. This
chapter presents a mathematical model for on-chip routers and utilize this new
model for NoC performance analysis. The model presented in this chapter can be
used not only to obtain fast and accurate performance estimates, but also to guide
the NoC design process within an optimization loop. The accuracy of our approach
and its practical use is illustrated through extensive simulation results.

5.1 Introduction

NoC communication architectures offer a scalable and modular solution for
implementing complex systems which consist of a large number of heterogeneous
components. The complexity of such systems, as well as the tight requirements in
terms of power, performance, cost and time-to-market, place a tremendous pres-
sure on the design team. To cope with this situation, application and platform
models are usually developed separately [10]. After that, the application is mapped
to the target platform and the resulting system is evaluated to ensure its compli-
ance with the design specifications, as depicted in Fig. 5.1.

The application model comes with some workload characterization (usually
given in probabilistic terms), while the platform itself may come with some low-
level information from the designers, depending on the targeted level of accuracy
for this type of evaluation. These models are used during the mapping step when
the target application is mapped onto the target architecture. Next, a performance
analysis step is needed to determine whether or not the chosen application-
architecture combination satisfies the imposed design constraints. Finally, the
information provided during the performance analysis step is used to refine the
communication architecture and decide the communication topology (e.g., bus,
point-to-point (P2P)), buffer space, etc.

U. Y. Ogras and R. Marculescu, Modeling, Analysis and Optimization 49
of Network-on-Chip Communication Architéctures, Lecture Notes

in Electrical Engineering 184, DOL: 10.1007/978-94-007-3958-1_5,

© Springer Science+Business Media New York 2013

50 5 NoC Performance Analysis

~

p
NoC Architecture)] [Application

o (topology, routing, etc. Dy
gl) T8
gl 2 L
5| 3 . 5
s g NoC Router Mapping £
3| £ (e Rover | g
[[o
= 0
=] 1 A 4 :
=1 : =
gl ! [=
Z ! > NoC 1 <
D
S| Model ! =
‘5 1 1 ?
|1 Router Model 1 =
2L B [
Q0 1]
] =
=2 ! 1 =
= 1 g
g Power & =
= Performance | £
1 Proposed Analysis &
1
1 methodology : g
Y e e Y e Y e e e e e e e e e e e e =}
¥ -3
°
=

—[Simulation/ Prototyping}

Fig. 5.1 The use of proposed performance analysis approach is illustrated with the Y-chart
scheme [1]

The success of this methodology depends critically on the availability of ade-
quate power and/or performance analysis tools that can guide the overall design
process. In order to be used in an optimization loop, such as the one shown in
Fig. 5.1, the analysis needs to be tractable, while still providing meaningful
feedback to the designer. Time consuming simulations can only come into the
picture at later stages, typically after the design space is already reduced to fewer
practical choices (the outer loop in Fig. 5.1).

We note that for traffic with guaranteed service [3, 12], accurate performance
figures can be easily derived. However, performance analysis for best effort traffic
relies largely on simulation or performance metrics derived under idealized con-
ditions. For example, the average hop count is commonly used to approximate the
average packet latency [13]. While this metric ignores the queuing delays and
network contention, approaches that do consider queuing delays often make other
idealistic assumptions such as exponential service times, infinite buffers, etc. [4, 5,
9]. Likewise, analysis of power consumption of the NoC architectures depends
largely on simulation [17, 21].

Starting from these overarching considerations, this chapter presents a formal
approach for NoC average-case performance analysis. At the very heart of the
proposed methodology lies a new router model which is based on a set of FIFO
buffers interconnected by a switch as shown in Fig. 5.2. The newly proposed
router model enables us to derive a closed-form expression for the average number
of packets at each input buffer in the router under Poisson traffic arrival assumption

5.1 Introduction 51

Fig. 5.2 The router model as
a collection of FIFO buffers is

illustrated for a router with A0 0 0
four channels. The arrival !
- _10 7\,2 0 0
rates to the router are A= 0 0 A 0
described by the diagonal 3
0 0 0 A

matrix A, and the average
number of packets at each
input channel is described
by N

4

N = [NlaNzaN3,N4]T

for the header flits." The proposed network performance approach provides three
performance metrics:

e Average buffer utilization of each buffer,
e Average packet latency per flow,
e Maximum network throughput.

Consequently, the proposed analytical framework can be easily used for design
and optimization purposes, as well as obtaining quick performance estimates.
At the same time, using the newly proposed performance model, we are able to
formally prove that dedicated P2P links result in better performance than router-
based communication, while router-based communication results in better per-
formance figures than shared buses under identical input traffic and service time
distributions. Finally, we utilize the proposed model to analyze the performance of
a basic NoC, given its topology, routing algorithm, as well as the driver application
and its mapping to the network nodes.

The remaining of this chapter is organized as follows. Section 5.2 reviews
related work and highlights novelty of the presented approach. Section 5.3 pre-
sents the router model used for performance analysis. Sections 5.4 and 5.5 present
techniques for router and network performance analysis, respectively. Experi-
mental results are provided in Sect. 5.6. Finally, Sect. 5.7 concludes the chapter.

5.2 Related Work

The design of application-specific NoCs is commonly formulated as a constrained
optimization problem [8, 13, 14]. Therefore, performance analysis techniques that
can be used in optimization loops are extremely important. The authors in [9]
consider the buffer sizing problem and present a performance model based on
queuing theory. However, the approach is applicable to only packet switched
networks. The work in [6] presents a wormhole delay model applicable to routers
with single flit buffers and assume that packet size dominates the overall latency.

' _Our assumptions.and router.model are detailed in Sect. 5.5.

52 5 NoC Performance Analysis

Related work about analysis techniques for wormhole routing comes mainly
from parallel computing and classical networks research communities. Many
studies target specific network topologies such as k-ary n-cubes [2, 4] and hy-
percubes [16]. The study presented in [5] is not restricted to a particular topology,
but it assumes an exponential message length distribution and it has a very high
complexity for high dimensional networks. A more general analytical model for
wormhole routing is presented in [7]. The model provides average packet latency
estimates using a sophisticated analysis.

This chapter presents a novel performance model for on-chip routers which
generalizes the traditional delay models for single queues and consequently cap-
tures the classical results as a special case. This new model is used to develop a
thorough performance analysis for wormhole routing with arbitrary size messages
and finite buffers under application-specific traffic patterns. This model has several
unique features. More precisely, (i) it directly targets NoCs under application-
specific traffic patterns, (ii) it supports arbitrary network topologies and deter-
ministic routing and, finally, (iii) it provides not only aggregate performance
metrics, such as average latency and throughput, but also feedback about the
network behavior at finer granularity (e.g., utilization of all buffers, the average
latency experienced at each router, average latency per flow). Given the generality
of this newly proposed model, it can be invoked in any loop for NoC optimization
(e.g., application mapping [8, 13], network architecture synthesis [14], buffer
space allocation [9]) for fast and accurate performance estimations.

5.3 Router Modeling for Performance Analysis
5.3.1 Basic Assumptions and Notations

We consider input buffered routers with P channels and target wormhole flow
control under deterministic routing algorithms. The size of the packets (bits) is
denoted by the random variable S, as listed in Table 5.1 along with other
parameters. The probability distribution of S is given by the driver application.
The network channel bandwidth is denoted by W (bits/sec). The router service
time for the header flitis given by H;. We note that H; is a function of the router design
and includes the time to traverse the router (7g) and the link (7,.). Since the remaining
flits follow the header flit in a pipelined fashion, the service time of a packet,
excluding the queuing delay (this will be accounted for in Sect. 5.5), is given by:

S
T=H;+ {W-‘ (5.1)
We denote by x,; (packets/sec) the rate of the traffic transmitted from the source
node at router s to the destination node at router d. Likewise, the traffic arrival rate
of the header flits to input channel j of router i is given by A; (packets/sec). We

5.3 Router Modeling for Performance Analysis 53

Table 5.1 List of input parameters used in this chapter

Input Explanation Depends on

S Random variable (rv) denoting the packet size Application

Xod Packet transmission rate from node s to node d

R Residual packet waiting time

Hg Service time for the header flit Router

w Network channel bandwidth

By Size of the input buffer at router i, channel j

T, T, rv T denotes the packet service time. T and 7?2 Application and Router
are its 1st and 2nd order moments

T2

cij, C Contention probability between channels i and j

Aj Mean arrival rate at input buffer of channel j Topology, routing, application

Aij Traffic arrival rate at router i, channel j

Bold symbols (e.g., S and T) denote random variables

assume that the arrival process of the header flits to the router inputs (4;) follows a
Poisson process. Note that under this model, the arrival process for the body flits is
not assumed to be Poisson; the Poisson assumption refers only to the header flit
distribution. This assumption, which is actually quite common in network per-
formance analysis [4, 6, 7], enables us to derive closed loop solutions and show
that our model generalizes the classical results for single queue systems.

We note that our evaluations on the actual distribution of the header inter-
arrival times based on the Pearson’s chi-square test [19] show that the Poisson
assumption holds pretty well at low and medium traffic rates, and it deviates from
the Poisson assumption at high traffic loads. Hence, the accuracy of the average
packet latency predicted by the proposed analytical model is expected to degrade
only when the network gets closer to its saturation point. However, we note that
the degradation in the accuracy of average packet latency is acceptable as long as
the saturation point can be predicted accurately. So while, in general, the real
arrival process may exhibit a more deterministic or long-range dependent behavior
[20], our model provides valuable insights into the router design process and
reasonably accurate results for pruning the design space at early design stages (see
Sect. 5.6). Relaxing the Poisson assumption remains an open problem [11, 15].

5.3.2 Analytical Model of the Router

This section focuses on modeling a single router as a set of first-come first-serve
(FCFS) buffers connected by a crossbar switch, as shown in Fig. 5.2. The
parameter of interest is the average number of packets at the input buffers, at each

54 5 NoC Performance Analysis

input channel 1,....P, i.e., N =[N, Ny, .. .NP}T. Since Poisson arrivals see time
averages (PASTA),” the following equilibrium equation is valid for the input
buffer at any channel j:

)= (5.2)

o2 |=

where 7; denotes the average time an incoming packet spends in queue j. 7; is
composed of the following components:

I Service time of the packets already waiting in the same buffer;

II The packets waiting in the other buffers of the same router and served before
the incoming packet;

III The residual service time seen by an incoming packet (R).

Therefore, 7; can be written as:

I I 7
P
G=TN,+T > cuNe+R (5-3)
k=1, ke

where the coefficients cj; denote the contention probabilities, i.e., the probability
that channels j and k compete for the same output. The second component of the
average waiting time (i.e. term /I in Eq. 5.3) applies only to those packets that will
be served before the incoming packet. The second component of the average waiting
time (i.e., term /I in Eq. 5.3) applies only to those packets that will be served before
the incoming packet. More precisely, the fraction of packets that will be served
before the incoming packets is captured by the coefficients ¢;;’s which represent the
contention probabilities among the packets arriving at ports i and j. This makes our
approach an average-case rather than a worst-case type of analysis. The computation
of these contention probabilities is illustrated in Sect. 5.3.3.

Depending on the output channel requested by the incoming packet and the
router scheduling policy (e.g. priority, round robin, etc.), an incoming packet can
be served earlier than a packet that is already waiting in one of the other buffers. In
the following, we assume the Round Robin policy, but the results can be extended
for other scheduling disciplines. Round Robin arbitration ensures that the router
bandwidth is utilized equally by all the input ports, as detailed in Sect. 5.3.3 when
we illustrate the computation of the contention probabilities. For example, if a
priority-based arbitration is used, then the average packet latency needs to be
different for each input port. More precisely, the port with the highest priority
would have the smallest latency, basically the router service time plus the residual

2 The PASTA definition implies that the distribution of packets in the system that is seen by a
new (arriving) packet is the same as the long run (time asymptotic) or steady state of the packet
distribution. This allows us to relate the mean waiting time a packet in the buffer with the mean
number.of packets.in all the buffers of the router.

5.3 Router Modeling for Performance Analysis 55

time. Similarly, the latency of the packets arriving at all other ports would need to
only consider the ports with higher priorities.

Let C; be the row vector C; = [cjl 1C2s e ij] of the contention probabilities,
where ¢;; = 1. Then, Eq. 5.2 can be written using t; from Eq. 5.3 as:

P
! since C;N = N; + Z CiiNy

A=
7 TC,N +R e
so re-arranging the terms yields:
4 TCN + AR = N; (5.4)

Equation 5.4 describes the equilibrium condition of the buffer at the input channel
J only. For the entire router, we denote the arrival rates (A), the contention matrix
(C) and the residual time (R) by:

A o --- 0 Cy 1
0 4 -+ 0 C — 1
A= , C= , R=R
0 0 - Zp PxP Cp PxP 1 Px1

Then, the equilibrium condition for the router can be written as:

TACN + AR =N
(I - TAC)N = AR

Finally,
N = (I-TAC)'AR (5.5)

The router model described by Eq. 5.5 provides a closed form expression for
the average number of packets at each buffer of the router, given the traffic arrival
rates (A), the packet contention probabilities (C), router design specifications
(Hy, W) and packet size distribution (S). Equation 5.5 generalizes the single queue
model; this is one of the major contributions of this work.

We note that when det(I — TAC) =0, the packet population in the router
grows to infinity. This corresponds to the case when the utilization is 1 for a
system with a single queue. The following example gives more intuition for
Eq. 5.5.

Example 1 Consider the case P =1 (i.e., single queue system) and infinite
buffers. In this case, Eq. 5.5 simply becomes:

AR
1-TA

N:

56 5 NoC Performance Analysis

Furthermore, the residual waiting time R = 1/2AT? where T2 is the second
moment of the service time [20]. As a result:

T2

N=sa=Tiy

(5.6)

which is precisely the average number of packets in an M/G/1 system. Hence, the
commonly studied distributions M/G/1, M/M/1 and M/D/1 become special cases of
our newly proposed model.

5.3.3 Computation of the Contention Matrix

Let f;; be the probability that a packet arrives at channel i and leaves the router
through channel j. The forwarding probability matrix is:

0 fiz fiz - fir

0 Aij

Fo | fos for , where fj=—"—, 0<ij<P (57)
S
fer fe2 o feso- 0 k=1

where 4; is the traffic arrival rate at input channel i which is routed towards the
output channel j. Assuming that the forwarding probabilities are independent for a
deterministic routing algorithm, the contention probabilities can be written in
terms of the forwarding probabilities as:

P
0<ij<Pi#j, cj=Y fafwi=j, ci=1 (5.8)
k=1

Example 2 Consider a router with three ports. The packets arriving at port 1 are
directed either to port 2 or port 3 with probability 0.5, i.e.,

fi2=05, fiz =05

Similarly, suppose that the packets arriving at port 2 are forwarded with
probability 0.4 to port 1 and with probability 0.6 to port 3. Finally, assume that
packets arriving at port 3 are always routed to port 1. Hence, the forwarding matrix
for this simple scenario becomes:

0 05 05
F=104 0 06
1 0 o0

ol LElUMN Zyl_i.lbl

5.3 Router Modeling for Performance Analysis 57

The diagonal entries ¢y, ¢z, ¢33 are 1 by definition. Other entries are found using
Eq. 5.8, as follows:

3 3 3
Cl2 = Zflkuk =03, cp3= Zflkak =0, and cp3 = Zf2kf3k —04
k=1 k=1 =1

In particular, we note that c;3 = 0, i.e., there is no contention, since all packets
arriving at port 3 are routed to port 1, while no packet arriving at input port 1 is
directed back to output port 1.

Example 3 Suppose that for a particular router with three ports, the packet arrival
rates are given as follows:

A1z = 0.01 packet/cycle (i.e. the rate of the traffic that enter the router at
channel and leaves at channel 2 is 0.01 packet/cycle),

A13 = 0.01 packet/cycle,

/21 = 0.02 packet/cycle, A3 = 0.01 packet/cycle,

A31 = 0.01 packet/cycle, 73, = 0.0 packet/cycle.

Then, the probability that a packet arrives at channel 1 and leaves the router
through channel 2 is found using Eq. 5.7 as:

A2

=——=05
A2+ 13

Sfi2
That is, given that a packet arrives at channel 1, it will leave the router from
channel 2 with 0.5 probability. Similarly, other probabilities are computed as
follows:

)43 121 /12’5
— M 05, =2 067, =B 033,
fia Ao+ A1z fu Ja1 + A2z f Ja1 + A2z
/31
=—=1.0
Ja 31+ Az

After that, the contention probabilities are found by plugging these probabilities
into Eq. 5.8.

5.4 Performance Analysis of Router, Shared Bus
and Point-to-Point Configurations

In this section, we first show how we model the performance of routers with
multiple virtual channels (VCs) using the proposed approach. Then, we show that
the on-chip router model given captures the shared bus architecture with Round
Robin arbitration policy as a special case. Using this model, we formally prove
that the on-chip router has always a better performance compared to a shared bus
architecture. Finally, we compare the performance of on-chip routers with varying

58 5 NoC Performance Analysis

Fig. 5.3 The router model
with multiple virtual
channels. The outgoing links
are not shown for simplicity.
The structure of A, and

N remains the same as for the
no virtual channel case

A =diag(Ap, Ay e 5 Ay)
N = [Ny Ny eve s NgI7

11>

number of virtual channels against the performance of a shared bus using a
multimedia system as a driver application.

5.4.1 Router with Multiple Virtual Channels

When there are multiple virtual channels connected to each physical port, we can
view the router as shown in Fig. 5.3. Essentially, the input received from the
physical link is statically demultiplexed to the available virtual channels. The on-
chip router model developed in Sect. 5.3 is valid when there are multiple virtual
channels. In this case, the state of the router is given by the average number of
packets at each virtual channel; hence the dimension of the router model becomes
the total number of input channels available, i.e., number of physical channels
(P) times the number of virtual channels per physical channel (V).

The second major change is related to the contention matrix. The contention
matrix is computed as shown in Sect. 5.3.3 and takes into account the forwarding
probabilities between each pair of virtual channels.

5.4.2 Performance Models for Shared Bus and Point-to-
Point Architectures

Figure 5.4 shows a set of processing elements connected through a shared bus. The
PEs write the messages to dedicated buffers which correspond to the input chan-
nels of the router shown in Fig. 5.2. When more than one buffer has data ready to
be sent, an arbitration phase takes place to determine which flow can use the
shared bus. As opposed to the router where simultaneous connections between
different input channels are possible, the shared bus can be used only by a single
flow at any given time. This means that the contention probabilities between each
pair of buffers (i.e. ¢;’s in Eq. 5.3) are equal to one; that is,

5.4 Performance Analysis of Router, Shared Bus and Point-to-Point Configurations 59

Fig. 5.4 Interconnection of M A,
the input channels shown in
Fig. 5.2 using a share bus.
While the router architecture Chl Ch2
shown in Figs. 5.2 and 5.3
allow multlple simultaneous Arbiter " !
connections, the shared bus r r
allows only one connection at
any given time Ch3 Chd
}\3 | K 2 }\‘4 Iy
1 1 1 1
1 1 1 - 1
Cpus = (5.9)

1 1 r -1

so, we can use Eq. 5.5 to compute the average number of packets in the buffers
connected by a shared bus as follows:

Npus = (1 - TBusACBus)_IATe (510)

where T, is the service time of the Bus architecture and Cg,, is the contention
matrix given in Eq. 5.9.

Finally, we note that when each buffer shown in Fig. 5.4 is connected to all the
remaining buffers via P2P links, the contention probabilities will be zero (i.e.,
c;j = 0 when i # j). Consequently, the average number of packets in the buffers
connected by dedicated P2P links is found as follows:

Npap = (I = TpopAI) 'AR = (I — TpopA) ' AR (5.11)

where Tpyp is the service time of the P2P architecture and the contention matrix
becomes the identity matrix. In fact, it is easy to see that Eq. 5.11 merely models
the system as a combination of independent M/G/1 buffers, which is expected.

5.4.3 Analytical Performance Comparisons

Since we obtained analytical expressions of average number of packets for NoC,
shared bus, and P2P architectures, we can now make a qualitative comparison
among them. In general, in order to prove that the NoC architecture performs
better than the shared bus architecture, we need to prove that Ny,c < Npys, 1.€.,

NN()C S NBus

_ _ 5.12
(I - TNOCACNOC)ilAR S (1 - TBuxAcBus)ilAR ()

60 5 NoC Performance Analysis

Similarly, in order to prove that the P2P architecture performs better than the
NoC architecture, we need to prove that Npyp < Ny,c. In what follows, we provide
a proof based on the properties of the contention matrix C, which makes the major
difference between these three architectures.

In general, the service times Tpyp, Tnoc, and Tp,, depend on the micro-
architecture (e.g., how many clock cycles the arbitration, buffer read/write, routing
take) and layout design (e.g., how fast each operation is performed or what is the
clock frequency). While the shared bus and P2P architectures enjoy the simplicity
of the control logic, the clock frequency may be lower due to large capacitive load
of the long interconnects. On the other hand, it usually takes more clock cycles to
pass through the router, but the router may operate faster due to the structured
wiring. Here, we consider the case when the overall service times are equal, i.e.,
Tpop = Tnoc = Tpus, and leave the general solution for future work.

Lemma 1 Let C; = Cy + 6, where Cy,Cy and 6 are P x P square matrices and,
0;j>0forvV0 <i,j <P, i.e., all elements of 0 are non-negative. Suppose that T is a
positive constant and A is a P x P diagonal matrix with non-negative components,
such that’

knm(TAcl)" =0, klim(TACZ)k =0 (5.13)
Then,
(I-TAG) ' > —-TAC,)™ (5.14)

where the inequality applies to each element of the matrices.* That is, each
component of (I — T/\Cz)71 is greater than or equal to each component of
(I—-TAC))™"

Proof When the conditions given in Eq. 5.13 hold, we can use the Neumann
series expansion for matrix inversion, i.e.

(I — TAG;)™ Z TAC) fori=1,2 (5.15)
k=0

So, we need to prove

o0

(TACy) > (TAC))* (5.16)
k=0 k=0

To prove the inequality given in Eq. 5.16 holds, we show that

* Equivalently, the eigenvalues of matrices TAC; and TAC] are less than one.

4 Note that, in this chapter, we use A > B to denote the element-wise comparison for two
matrices.of same dimensions.

5.4 Performance Analysis of Router, Shared Bus and Point-to-Point Configurations 61

(TAC,)* > (TAC))* for Vk >0 (5.17)

This inequality is trivially satisfied for k = 0. We employ mathematical induction
to show that the equality also holds for k > 0.

Fork =1: TAC, — TAC, = TA(C, — Cy) = TAS > 0, since all elements of A
and 0 are non-negative.

For k = n: Suppose (TAC,)" > (TAC;)" and let

(TAGy)" — (TACy)" = A, >0, i.e., all components of A, are non-negative.

For k =n +1: Let

(TAG)"™™" — (TAC)"™™" = Apy (5.18)

Anit = (TAG)(TAG,)" — (TAC,)(TAC,)"
= TA{Cy(TACy)" — C\(TAC)"}
= TA{(C) + 0)(TACy)" — C\(TAC,)"}

=TA{(CI{(TAG,)" — (TAC))"} + 6(TAC,)"} (5.19)
= TA{C 4, + 5(TAC,)"}
>0

In line (1) of Eq. 5.19, we simply rewrite Eq. 5.18 by factoring out TAC, and
TAC, respectively. Then, we further factor TA out and substitute C, with C; + 9,
in lines (2) and (3). Next, we observe that (TAC,)" — (TAC,)" = A, in line (4).
Finally, we note that all the matrices in line (5) are non-negative. So,

(TAGy)* > (TAC))* for Vk >0

Hence,

o0

Z(TACZ)k >

k=0

(TAC))

gk

~
Il

0

since all the terms in the left hand side are greater than or equal to the corre-
sponding terms in the right hand side.

O

Example 4 Consider the case P = 1. The lemma reduces to the following
statement:
Fora>0,c1 >0,¢c0 >0,ac;<1,ac, <1,

1

c>cp = >
1—ac; = 1—ac

Theorem 1 Consider P buffers connected by a router (as in Fig. 5.2), by a shared
bus (as in Fig. 5.4), and via point-to-point links. Also, assume that:

62 5 NoC Performance Analysis

(i) The arrival rates to the buffers, Ay, A3, . .., Ap are all identical and follow the
assumptions stated in Sect. 5.3.1;

(i) The service times are all equal, i.e. Tpop = Tyoc = Tpus = T,
Then, we have that: Nprp < Nyoc < Npys.

Proof Let
C = Cgus = Cnoc + Onoc = Cpap + Op2p + Inoc (5.20)

where Opyp and Oy,c are matrices with non-zero entries. We can write these
relations, since Cpyp is the P x P identity matrix, Cp,, consists of all ones, and
0<¢;; <1 for all entries of Cyyc.

The average number of packets in the buffers for the shared bus case is given by
Eq. 5.5 as follows:

N = (I —TAC)'AR

We are interested in the operating domain where the inverse of TAC exists, i.e., N
is finite.” When klim(T/\C)k exists (or equivalently the eigenvalues of the matrix
—00

(TAC) are less than one [16]), Eq. 5.15 holds. Consequently, using the result of
Lemma 1, we have:

(I = TACpop) ™' < (I = TACwoc) " < (I = TACpus)™'

where the equality holds for each component of the P x P matrices. Finally, since
all elements of AR >0, using Eq. 5.5 we obtain:

(I — TACpp) ' AR

Npap

(I — TACnoc) ' AR

Equation 5.21 gives the relation between the average number of packets in queues
connected by P2P links, router and shared bus under identical service times and
arrival rates. The relation for arbitrary arrival rates and service times can be
analyzed using Egs. 5.5, 5.10 and 5.11, respectively.

5.4.4 Using Equation 5.5 for Router Design

The router model described by Eq. 5.5 provides an analytical approach to analyze
the effect of various router parameters on network performance. Consider the
multimedia system design in [8] where the packets in the network carry data as

5 When P = 1, this condition reduces to AT <1 known as the stability condition for a single
buffer.

5.4 Performance Analysis of Router, Shared Bus and Point-to-Point Configurations 63

number of flits in the router T
(i.e., the sum of the flits in all
five buffers) is shown as a
function of the buffer size and
service time of the router

Fig. 5.5 The average e

Average number
of flits in the router
)

5
Service time for the 0 1 3
header flit (Hy) (cycles) Buffer depth (B;) (flits)

8 x 8 fixel blocks. Each pixel value is represented by 16 bits, so S = 1024 bits.
We assume that the channel bandwidth is given by W = 256 X f,;,, where f;, is the
clock frequency of the router.

Two major concerns in router design are the number of pipeline stages, i.e., the
number of cycles it takes to route the header flit (H,), and the size of the input
buffers (B). To analyze the impact of these parameters on router utilization, we
first map the system to a 4 X 4 mesh network running under XY routing, and
determine arrival rates (A) and the contention matrix C for the bottleneck router.
Then, we use Eq. 5.5 to analyze the impact of H; and B on buffer utilization.

Figure 5.5 shows the average number of flits in the router (at all buffers) as a
function of H, and B;. For a given buffer size, the average number of flits in the
router increases with increasing service time, as expected. This increase is more
severe for larger buffers, since more flits are stored in the buffer before being
blocked. Likewise, for a given service time, the router utilization saturates, as the
buffer size increases. The saturation occurs earlier for lower service times, as
depicted in Fig. 5.5. For example, when H; = 2, increasing the buffer size beyond
Bj =2 for 1 <j<5 does not increase the buffer utilization (see point “A” in
Fig. 5.5), since the router is very fast. On the other hand, for larger service times
(e.g., Hy = 8, point “B” in Fig. 5.5), the saturation point moves further away, i.e.,
more flits wait in the buffer before being served.

This case study illustrates the possible use of the proposed router model as a
powerful tool for router design space exploration. Indeed, this model can be used by
designers to evaluate possible trade-offs offered by different design choices (e.g.,
buffer size, channel width) that are nowadays determined mostly in an ad-hoc manner.

5.5 Network Performance Analysis

The router model presented in Sect. 5.3 enables the calculation of the average
utilization of the input buffers given the traffic input to the router. In this section,
we discuss how this model can be actually utilized to analyze the performance of

64 5 NoC Performance Analysis

the entire network. More specifically, we compute the average buffer utilization in
the router, average packet latency and the maximum network throughput using the
proposed model.

The processing elements connected to the routers, put the new packets first to an
egress queue. This queue is connected to one of the input ports of the router.
Therefore, packets experience some latency before being injected to the network;
M/G/1/m queuing is used to model this queuing delays at the sources. In order to
account for these effects, we compute the traffic arrival rates (4;) at channel
i being routed through channel j for all routers as follows:

)vij = Zszdm(S,d,i,j) (522)

Vs Vd

where R is the routing function such that R(s,d,i,j) = 1 if the packet sent from
the source PE s to the destination PE d is routed through the input channel i and
routed via output channel j of a router, and R(s,d, i,j) = 0 otherwise.

We note that the routers are typically interconnected in a network. Hence, the
service time for the header flits may increase due to chained blocking at the
downstream routers. In general, the blocking probabilities, hence the expected
waiting time of the header flit due to blocking, can be computed using an iterative
process similar to [6] or through computation ordering [7].

In order to compute the delay experienced at the intermediate routers, in our
experimental work, we first apply Eq. 5.22 by going through all the flows x,; and,
following the routing algorithm, traverse the network from source s to destination
d to find the packet arrival rates at each input port of each router. Knowing the
traffic arrival rates A;, we compute the forwarding probabilities, i.e., matrix
F using Eq. 5.7 and then we compute the contention matrix C using Eq. 5.8; this
captures the congestion effects at various points in the network. Finally, we use
Eq. 5.5 to find the utilization of each input port.

5.5.1 Average Buffer Utilization and Packet Latency

Given the arrival rates, A;, at each input channel in the network, the contention
matrix for each router, and T, we use Eq. 5.5 to find the average number of packets
in the input buffer at each router. This information can be used for optimization
purposes (e.g. to determine the buffer sizing), since buffer utilization provides
information about the distribution of the traffic load across the network. The
average buffer utilization can also be used to compute the average waiting time in
buffers. By Little’s theorem:

Wi = Nij/ 4 (5.23)

5.5 Network Performance Analysis 65

where W; is the average waiting time in the channel j buffer at router i. Since we
already know the packet service time, W; enables us to compute the average
packet latency at each router.

The delay experienced at each router is a performance metric with very fine
granularity. Indeed, it can be used to compute the average latency for each traffic
source/destination pair separately, as well as the average packet latency in the
network. When a packet is sent from the source node s to the destination node d, it
traverses a set of routers and the corresponding input buffers denoted by] ,. The
average latency for any packet from node s to node d (denoted by Ly,) is given by:

vd - W + Z WU + T
(i)e] L,

where W; is the queueing delay at the source, Wj; is the queuing delay at channel j of
router 7, and 7'is the average service time. W, is computed using the M/G/1/m model,
since the buffers in the PEs are also finite. Then, the overall average packet latency
in the network is found as:

szd X Lsa (5.24)

Xsd
VY y Vs,d
This relation provides fast and accurate estimates of L for a variety of traffic
patterns and application mappings, as in Sect. 5.6. It can be applied to a wide
range of optimization problems, since average packet latency is a common per-
formance metric.

5.5.2 Network Throughput

The network throughput is defined as the rate at which the packets are delivered to
the destination nodes. At low traffic loads, the packet delivery rate is equal to the
packet injection rate. However, as the traffic load increases, the throughput starts
saturating. In order to investigate the impact of increasing packet injection rates on
the average number of packets at the router input buffers and implicitly on the
network throughput, we multiply the source to destination traffic generation rates
by a positive scaling parameter (i.e., > 1 but still close to 1). Scaling the traffic
arrival rates to the router inputs, o4;, in Eq. 5.5 allows us to write the following
relation between the throughput N and scaling parameter o:

N(x) = (I — «TAC) '0AR (5.25)

where N(o) is the average number of packets in the router as a function of «. When
the utilization of the input buffers approaches unity, the router will be always busy

66 5 NoC Performance Analysis

so its throughput will saturate. The approximate value of o that will saturate a
given router can be found by solving the following equation:

Ni() =1 (5.26)

j=1

We solve Egs. 5.25 and 5.26 to find the minimum value of o over all the routers,
i.e. dyy. Then, the traffic generation rates at which the application throughput
saturates is found as o, x;q. Finally, the saturation throughput of the network is
found as:

P Y s

Vs,d

In summary, the basic idea of our approach is to identify the bottleneck router,
which happens to be the router with the highest amount of traffic through it. The
critical load of this router defines the critical load of the overall network, since the
congestion propagates quickly across the entire network.

5.5.3 Overview of the Performance Analysis Methodology

The proposed analysis technique is summarized in Fig. 5.6. First, the traffic input
rates to the routers and packet service time (including the waiting time due to
blocking) are computed using Eqs. 5.1 and 5.22. In order to find the average
packet latency, we follow the path on the left in Fig. 5.6. The average utilization of
the input buffers in the routers are found using Eq. 5.5 (Step 2a). Next, the average
packet latency in the network is found using Eq. 5.24 (Step 3a). Finally, to find the

Fig. 5.6 Overview of the Application Network Architecture
proposed performance
analysis approach Packet generation rates (Xij) Topology
Packet size distribution Channel width (W)
Buffering space (B)
. Router service time (H,)
Routing algorithm

[Determine xij and T] Step 1

[-

Max throughput of
the bottleneck router

Step 2a (Average buffer Step 2b

utilizations Nij

Average packet | Network Step 3b
latency | throughput

Step 3a

5.5 Network Performance Analysis 67

saturation throughput, we identify the bottleneck router and use Eq. 5.27 (Steps 2b
and 3b in Fig. 5.6).

5.6 Experimental Results

This section provides a detailed study on the accuracy and run-time of the
proposed approach. The analytical results obtained using the proposed method are
compared against those obtained with a cycle-accurate (flit-level) NoC simulator
[22]. Both the simulator and the analytical model are implemented in C++ and
tested on a Pentium 4 computer with 512M memory running Linux OS.

Throughout the experiments, we assume that each input and output buffer slot
can hold a 64-bit flit. In the absence of contention, the router service time is 4
cycles. We also assume that the link transmission takes 1 cycle. Simulations run
for 5 x 10* cycles with an initial warm-up period of 2000 cycles. Also, simulations
of a particular configuration are repeated 100 times with different seeds in order to
collect reliable averages.

5.6.1 Average Packet Latency

We first consider the multimedia application in [8] which is manually mapped to a
4 x4 2D mesh network with input and output buffer sizes of 5 x 64 and
1 x 64 bits, respectively. We compare the average packet latency obtained using
the proposed approach against the values obtained by simulation. The average
packet latency as a function of the packet injection rate is shown in Fig. 5.7.
We observe that the latency values estimated by the proposed approach follow
the simulation results closely. More precisely, for packet injection rates below 0.2
pkt/cycle, the relative error between the analytical and simulation results is within
5 %. After that, the latency values start increasing abruptly, since at this critical

Fig. 5.7 Average packet 250

latency values found with the
proposed approach and by
simulation are shown

=¥ Simulation
—O6— Analysis

200

150 [~ b b

[——_————_——_—_——————

BOL-—r e

Average packet latency (cycle)

0.08 0.12 0.16 0.2 0.24
Packet injection rate (pkt/cycle)

68 5 NoC Performance Analysis

e Simulation - router
service time of 3 cycles ' ' :
100 [. Analysis - router — |---eeeeeeeeees Peveeerevasenreresn et Al At { ke
senvice time of 3 cycles '] i J:
- Analysis - router ' ' [/
80 H service time of 4 cycles |-------------- Premesnnnennaaan o oo e freeees 4
_._Simulation - router : i
service time of 4 cycles : Fiw,
m n*amuia‘tlon_router ,,.,,.,,.....,!,..,,.,,,.,,.,, A
service time of 2 cycles '
Analysis - router
service time of 2 cycles|

40 |

Average packet latency [clock cycles]

Packet size (number of flits per packet)

Fig. 5.8 Average packet latency found analytically and by simulation as a function of packet
sizes (i.e., number of flits per packet) and three router service times

traffic load the network enters the congestion region. Our approach is also capable
of estimating this critical value, as we demonstrate in Sect. 5.6.3.

We also investigate the impact of packet sizes (i.e., the number of flits per
packet) and router service time (i.e., 2, 3 and 4 clock cycles) on the average packet
latency for a multimedia application mapped on a 4 x 4 2D mesh NoC with input
and output buffer sizes of 5 x 64 and 5 x 64 bits, respectively, and a packet
injection rate of 0.16 packets/cycle. The channels are 64-bit wide and link traversal
latency is 1 clock cycle. The simulation length was 2 x 10° clock cycles.

As shown in Fig. 5.8, the average packet latency values are close for both
analysis and simulation for all three router service times and for packet sizes up to
16 flits per packet. For instance, the average packet latency for a router service
time of 2 clock cycles and packet sizes of 16 flits is 44.5 cycles via our proposed
approach and 43.2 cycles via simulation. Similarly, for router service time of 3
clock cycles and packet sizes of 15 flits, the average packet latency is 45.2 cycles
via our approach and 45.7 via simulation. The differences that emerge for packet
sizes larger than 16 flits per packet can be attributed to the congestion effects.

Next, we assess the accuracy of our approach for different application map-
pings. We performed experiments for 1000 random mappings. For each mapping,
the average packet latency is computed using the proposed approach and by
simulation, at 0.16 pkt/cycle injection rate, which is a possible operating point (see
Fig. 5.7). We repeat each simulation 50 times with different seeds; the results are
averaged such that the measured latency is within one standard deviation of the
actual value with 95 % confidence. More formally, let Ls(i) be the average packet
latency for mapping i obtained by simulation and L, (i) be the corresponding
latency obtained using Eq. 5.24. The relative error between the analytical and
simulation results, for 1000 different mappings, is:

5.6 Experimental Results 69

Err = — %'LS 0l (5.28)
"= 7000 4 ‘

Using this definition, the relative error between the analytical and simulation
results is about 9 %. This is actually a very good accuracy level, given that the
relative error is very sensitive even to small differences in data values.

5.6.2 Case Study: Application Mapping

In general, the NoC design space is too big to explore by simulation. For instance,
there are n/ different ways to map a given application to a network with n nodes.
Since the proposed performance model targets NoC design and optimization, we
illustrate the effectiveness of our approach using application mapping, which is a
common optimization problem for NoCs [8, 13]. More precisely, based on the
average packet latency, we first rank order 1000 different mappings obtained in
Sect. 5.6.1. It takes about 22 h to find the best mapping through simulation,®
whereas our approach completes the analysis of all possible solutions in about 7 s,
which is about 4 orders of magnitude faster!

According to the simulation results, the best among all 1000 mappings is the
mapping with ID 268 with an average latency of 35.5 cycles. According to the
analysis we propose, the best mapping is the one with ID 732 which has average
latency of 35.3 cycles. The latency for mapping ID 732 found by simulation is 36.2
cycles. As such, the analysis approach selects a mapping whose latency is within
2 % of the best one found by simulation. We also note that by using a zero-load
model (i.e., ignoring the impact of communication) results in 33.54 % error in
average packet latency estimation when compared to the simulation reference.
Additionally, the analysis discovers the best mapping 4 orders of magnitude faster
than the simulation approach and so much more mappings can be explored, within
the same time budget, using the proposed analytical technique.

To evaluate the analysis approach from a different angle, assume now that the
objective is to select the 10 best mappings for more detailed evaluations. There-
fore, we denote the top 10 mappings obtained via simulation as being the golden
set. Then, we find the top k mappings based on the analysis results, where
1 <k <100. When we pick strictly the top 10 mappings based on analysis, only 5
mappings selected by simulation are missed. However, the number of misses drops
exponentially to zero as k increases. For instance, the top 20 mappings picked by
our approach include 7 best mappings found by simulation, while top 46 mappings
contain all 10 best mappings, as shown in Fig. 5.9. For completeness, we also

6 Each mapping is simulated 100 times and the average latency over all runs is used for ranking
to increase the confidence level of the results. Run-time comparisons against a single simulation
run.are presented.in Sect. 5.6.5.

70 5 NoC Performance Analysis

Fig. 5.9 The top mappings ., 10
selected by simulation, but
missed by analysis are shown

el et Bl [[ttt Rl Bt el

i
i
'
i
r
i
|
i
|
r
|
|
|
|

46 bezzst mapp:ings acaiording t:o
4 - - = = - ~amalysis include-atl-best-10- - - - - - - [l
mappings pi¢ked by $imulatipn | 1

2 ST T T T T T s Mfi(ky=e ™]
I i I

Number of missed mappings

0 ‘ ‘ ‘
10 20 30 40 50 60 70 80 90 100
Number of mappings picked by analysis (k)

select the top 10 mappings according to zero-load model and do a pairwise
comparison between these mappings in terms of average latency. Then, using
simulation results, we check whether or not the conclusion drawn based on zero-
load model (e.g., mapping configuration i is better than mapping j) is correct. We
find that 69 % of the comparisons agree with the simulation results, while 31 % of
the comparisons result in wrong decisions. Finally, we repeat the same experiment
using the mappings obtained via the proposed approach. We observe that 87 % of
the comparisons lead to the same conclusion with the simulation results. Hence,
the proposed approach increases the comparison accuracy from 69 to 87 % which
means about 26 % improvement.

To sum up, the proposed method can be used to prune the large design space in
a very short time compared to simulation. Experiments performed on larger net-
works show several orders of magnitude achievable speed-up compared to a single
simulation run. Considering that many simulations are needed to obtain high
confidence intervals, the overall speed-up due to the analytical approach is sig-
nificant. Moreover, the simulation run-time grows faster for heavier traffic, while
the run-time of the analytical approach remains pretty much the same.

5.6.3 Network Throughput

Next, we compare the maximum network throughput obtained via simulation
against the analysis results found using Eq. 5.27. In order to test the robustness of
our approach to non-uniform traffic conditions, each node communicates only with
the nodes that are located within a forwarding radius. Furthermore, if the distance
between the source and destination nodes is given by dist(s,d), then the forwarding
probability py (s, d) is:

~1/dist(s,d) dist(s,d) <Fg

5.29
0 dist(s,d) > Fg (5.29)

s = {

5.6 Experimental Results 71

Fig. 5.10 Sustainable 0035 T T T = =
network throughput for 8 x 8 3 ! ! ! Simulation
2D mesh network with local g 0.03 p==mn-- N T . —>— Analysis
traffic described by Eq. 5.29 2 ‘ ‘ ‘ ‘ ‘ X
= 0.025 F------ it Foos it T 72
5 | | | |
= ; ; ; ; ‘
s 002 f------ B m-m-- B EEEES” LR REEEEEE
2 ; ; ; ; ;
2 i i i | i
S 0015 [~ Lo boooo- T toooooo
‘% 1 1
° 4 i | |
001 f------ AR e mmmmmes e R
g ' ' ' Increasing locality
0.005 ; ! ! : :
14 12 10 8 6 4 2

Forwarding radius (# of hops)

where Fi (number of hops) is the radius of the forwarding region. The maximum
network throughput of a 8 x 8 mesh network, as a function of the traffic locality is
given in Fig. 5.10. As expected, the network throughput increases with the level of
the locality. Furthermore, our technique provides a close approximation to the
simulation results over a wide range of characteristics in the traffic locality.

5.6.4 Application to Arbitrary Topologies

Since the proposed performance analysis is general, we apply it now on arbitrary
topologies [14]. To this end, we analyze and simulate the simple network in
Fig. 5.11a. Figure 5.11b describes the traffic pattern and the deadlock-free routing
algorithm used in the network. The entries of routing matrix, RM(i,j)1 <i,j <8,
show whether there is communication between nodes i and j, and the routing
choice in case they communicate. For instance, in Fig. 5.11b, RM(1,5) = -
implies that node 1 does not send packets to node 5. On the other hand,
RM(1,6) = 4 means that node 1 forwards the packets to node 4, when it needs to

Id}1 31415]16]7]8
[-]2]2[4][-[4]8]8
2]=-13]-1-1-17]7
322 {-T-[s]-T-1-
rvo LAl -]-T6]-]-
sa]3]3]-|-[e]-|-
ofal4|s]4]s5]-|7]-
7l2]2]2]-[-]-[-]8
8l1|s]|-|-|-[-]17]-
(b)

Fig. 5.11 a Arbitrary network topology used to test the proposed technique and b the Routing
Matrix (RM)

72 5 NoC Performance Analysis

communicate with node 6. For the pairs that communicate the traffic rate is uni-
form. Finally, the traffic load between all pairs of communicating nodes is uniform
and the packets consist of 15 flits.

The maximum throughput of this network is found as 0.2 packets/cycle using
our technique. To evaluate the accuracy of this value, we also run 50 simulations
with different random seeds and identify the maximum throughput as 0.18 packets/
cycle. As such, the difference between simulation and analysis is about 11 %.

5.6.5 Complexity and Run-Time Analysis

Finally, we compare the run-time of the proposed analysis approach for latency
computation (left branch in Fig. 5.6) with the run-time of the simulator. The
methodology has three major steps:

e Computation of the input rates for each network channel (Eq. 5.22),

e Computation of the average buffer utilization and queuing delay at each input
buffer (Eq. 5.5)

e Computation of the average packet latency (Eq. 5.24).

The computational complexity of solving steps 1 and 3 is proportional to the
product between the number of routers (R), the number of ports per router (P), and
the number of traffic flows in the network (7). On the other hand, the computa-
tional complexity of step 2 is proportional to R x P>. As a result the overall
complexity is obtained as O(RPT;) + O(R x P*).

Both the simulator and the analytical model are implemented in C++ and tested
on a Pentium 4 computer with 512M memory running Linux OS. Figure 5.12
shows the run-time values for the proposed analytical model and simulation on 2D
mesh networks with sizes ranging from 4 x 4-to-12 x 12. We observe that the
analysis is two order of magnitude faster than a single run of the simulation. It is
important to note that the two orders of magnitude reduction we show in Fig. 5.12
is a lower bound, since it compares the analysis run-time against a single simu-
lation run. In practice, simulations of a single configuration are repeated many

Fig. 5.12 The run times of 100000
the proposed analytical

method and a single 10000 ~
simulation run are shown for

. . . 1000
increasing network sizes. The y
analysis is about two orders 1004

of magnitude faster than a
single simulation run, as the
log scale y-axis shows

10 A

Run-time (msec)

=o—Simulation run time
=@=Analysis run time
T T

1| T T
9 16 25 36 49 64 81 100 121 144

Network size (number of routers)

5.6 Experimental Results 73

times to reduce the impact of randomness involved in traffic generations [18]. For
instance, simulation results reported in this chapter are averaged over 100 simu-
lations with different seeds. Consequently, the actual speed-up gained by using the
proposed analytical technique as opposed to simulation is much higher as reported
in Sect. 5.6.2. Finally, we also note that simulation run-time grows faster for
heavier traffic, while the run-time of the analytical approach remains pretty much
the same.

5.7 Summary

In this chapter, we presented a novel router model for NoC performance analysis.
Our approach provides not only aggregate performance metrics such as average
latency and throughput, but also feedback about the network characteristics (e.g.,
buffer utilization, average latency per router and per flow) at a fine-level of
granularity. Furthermore, the presented approach makes the impact of different
design parameters on the performance explicit so it provides invaluable insight
into NoC design. As a result, the proposed approach can be used as a powerful
design and optimization tool. Experimental results demonstrate the accuracy and
efficiency of the analysis on real and synthetic benchmarks.

References

1. Bertsekas D, Gallager R (1992) Data networks. Prentice Hall, Upper Saddle River

2. Dally WJ (1990) Performance analysis of k-ary n-cube interconnection networks. IEEE Trans
Comput 39(6):775-785

3. Dielissen J, Radulescu A, Goossens K, Rijpkema E (2003) Concepts and implementation of
the Philips network-on-chip. IP-based SoC Design

4. Draper J, Ghosh J (1994) A comprehensive analytical model for wormhole routing in
multicomputer systems. J Parallel Distrib Comput 23(2):202-214

5. Guan W, Tsai W, Blough D (1993) An analytical model for wormhole routing in
multicomputer interconnection networks. In: Proceedings of international parallel processing
symposium, April (1993)

6. Guz Z, Walter I, Bolotin E, Cidon I, Ginosar R, Kolodny A (2006) Efficient link capacity and
QoS design for wormhole network-on-chip. In: Proceedings of design, automation and test in
Europe conference, March (2006)

7. Hu P, Kleinrock L (1997) An analytical model for wormhole routing with finite size input
buffers. In: 15th international teletraffic congress, June (1997)

8. Hu J, Marculescu R (2005) Energy- and performance-aware mapping for regular NoC
architectures. IEEE Trans Comput Aided Des Integr Circuits Syst 24(4):551-562

9. Hu J, Ogras UY, Marculescu R (2006) System-level buffer allocation for application-specific
networks-on-chip router design. IEEE Trans Comput Aided Des Integr Circuits Syst
25(12):2919-2933

74

10.

11.

12.

14.

15.

16.

17

18.
19.

20.

21.

22.

5 NoC Performance Analysis

Lieverse P, Van Der Wolf P, Vissers K, Deprettere E (2001) A methodology for architecture
exploration of heterogeneous signal processing systems. J VLSI Signal Process Syst Signal
Image Video Technol 29(3):197-206

Marculescu R, Ogras UY, Peh L, Jerger NE, Hoskote Y (2009) Outstanding research
problems in NoC design: system, microarchitecture, and circuit perspectives. IEEE Trans
Comput Aided Des Integr Circuits Syst 28(1):3-21

Millberg M, Nilsson E, Thid R, Jantsch A (2004) Guaranteed bandwidth using looped
containers in temporally disjoint networks within the Nostrum network on chip. In:
Proceedings of design, automation and test in Europe conference, Feb (2004)

. Murali S, De Micheli G (2004) Bandwidth-constrained mapping of cores onto NoC

architectures. In: Proceedings of design, automation and test in Europe conference, Feb
(2004)

Ogras UY, Marculescu R (2006) “It’s a small world after all”: NoC performance
optimization via long-range link insertion. IEEE Trans Very Large Scale Integr Syst Special
Sect Hardw/Softw Codesign Syst Synth 14(7):693-706

Ogras UY, Bogdan P, Marculescu R (2010) An analytical approach for network-on-chip
performance analysis. In: IEEE transaction on computer-aided design of integrated circuits
and systems (TCAD), vol 29, Issue 12, Dec (2010)

Ould-Khaoua M, Sarbazi-Azad H (2001) An analytical model of adaptive wormhole routing
in hypercubes in the presence of hot spot traffic. IEEE Trans Parallel Distrib Syst
12(3):283-292

. Pande PP, Grecu C, Jones M, Ivanov A, Saleh R (2005) Performance evaluation and design

trade-offs for network-on-chip interconnect architectures. IEEE Trans Comput 54(8):
1025-1040

Ross S (2006) Simulation. Elsevier Academic Press, New York

Strang G (2009) Introduction to linear algebra, 4th edn. Wellesley-Cambridge Press,
Welleseley

Varatkar G, Marculescu R (2004) On-chip traffic modeling and synthesis for MPEG-2 video
applications. IEEE Trans VLSI 12(1):108-119

Wang H, Zhu X, Peh L, Malik S (2002) Orion: a power-performance simulator for
interconnection networks. In: Proceedings of annual international symposium on
microarchitecture, Nov (2002)

Worm_Sim: a cycle accurate simulator for Networks-on-Chip. http://www.ece.cmu.edu/
~ sld/wiki/doku.php?id=shared:worm_sim

http://www.ece.cmu.edu/~sld/wiki/doku.php?id=shared:worm_sim
http://www.ece.cmu.edu/~sld/wiki/doku.php?id=shared:worm_sim

Chapter 6
Application-Specific NoC Architecture
Customization Using Long-Range Links

Networks-on-chip (NoC) represent a promising solution to complex on-chip
communication problems. The NoC communication architectures considered in
the literature are based on either completely regular or fully customized topolo-
gies. This chapter presents a methodology to automatically synthesize an archi-
tecture which is neither regular, nor fully customized. Instead, the resulting
communication architecture is a superposition of a standard mesh network and a
few long-range links which induce small world effects. Indeed, the few applica-
tion-specific longrange links we insert significantly increase the critical traffic
workload at which the network transitions from a free to a congested state. This
way, we can exploit the benefits offered by both complete regularity and partial
topology customization.

6.1 Introduction

Regular NoC architectures based on grid-like topologies as in Fig. 6.1 provide
structured global interconnects. This ensures well-controlled electrical parameters,
and reduced power consumption on the global wires. However, such architectures
may suffer from long packet latencies due to the lack of fast paths between
remotely situated nodes. Indeed, having to traverse many hops between any two
remotely communicating nodes increases the message blocking probability. This
makes the message latencies unpredictable and guaranteed service operation hard
to achieve. Moreover, since most of the real-life applications have widely varying
communication requirements, such general purpose platforms may become less
attractive for application-specific designs that need to guarantee a certain level of
performance.

On the other hand, fully customized topologies [19, 23, 25] improve the overall
system performance at the expense of altering the regularity of the grid structure.

U. Y. Ogras and R. Marculescu, Modeling, Analysis and Optimization 75
of Network-on-Chip Communication Architéctures, Lecture Notes

in Electrical Engineering 184, DOL: 10.1007/978-94-007-3958-1_6,

© Springer Science+Business Media New York 2013

76 6 Application-Specific Noc Architecture Customization Using Long-Range Links

Mesh network Mesh network with long-range links
Processing Regular Router with
node . Router D extra port
Long-range M Regular link
N link 4

Fig. 6.1 Adding long-range links to a 4 x 4 standard mesh network

This results in global wires with widely varying lengths, performance and power
consumption. Consequently, better logical connectivity comes at the expense of a
penalty in the structured wiring. Hence, usual problems like cross-talk, timing
closure, wire routing, etc. may undermine the advantages expected from cus-
tomization. Besides these issues, the customized topologies require specific rout-
ing algorithms, which can be difficult to implement.

Fortunately, these two extreme points in the design space (i.e. purely regular or
completely customized topologies), are not the only possible solutions for NoC
architectures. In fact, many technological, biological, and social networks are
neither completely regular, nor completely irregular [12, 27, 28]. One can view
these networks as a superposition of clustered nodes with many short-range links
and a few long-range links that produce shortcuts among different regions of the
network. The existence of short paths between such remotely situated nodes lies at
the heart of the small-world phenomenon, popularly known as six degrees of
separation [16, 27]. A useful feature of these small-world networks (e.g. WWW,
electrical power grid, collaboration networks) is the logarithmic relation between
the mean internode distance and network size.

Starting from this idea, this chapter explores the potential of using standard
mesh in conjunction with a few additional long-range links, to improve the per-
formance of NoCs. Inserting a few long-range links to the basic regular archi-
tecture (as illustrated in Fig. 6.1) clearly reduces the average distance between
remotely situated nodes. Furthermore, the node/edge connectivity, hence the
network reliability, is also improved. However, long-range link insertion has to be
done judiciously as it has a more pronounced, yet barely studied, impact on the
dynamic properties of the network characterized by traffic congestion. At low
traffic loads, the average packet latency exhibits a weak dependence on the traffic

6.1 Introduction 77

Fig. 6.2 Shift in the phase 300
transition region due to the
insertion of long-range links
to a 6 x 6 mesh network

. V- 1 6x6 Mesh network
6x6 Mesh network with:

i :
! ;
1 :
long-range links : 'T-

iq176
o

1
#,Reduction:

Average latency
(cycles)
N
=]
[=]
T

100

05 0.6 0.7 0.8
Total packet injection rate (packet/cycle)

. V 1 6x6 Mesh network

— 6x6 Mesh network witl’@ long-range links

Network throughput
(packet/cycle)

04

i
05 0.7 0.9 {1
Total packet injection rate (packet/cycle)

injection rate. However, when the traffic injection rate exceeds a critical value, the
packet delivery latency rises abruptly and the network throughput starts collapsing
(Fig. 6.2). The state before the congestion (that is, the area at the left hand side of
the critical value) represents the free state, while the state beyond the critical value
is the congested state. Finally, the transition from a free to the congested state is
known as phase transition region.

The emergence of congestion in mesh networks can be significantly delayed by
introducing a few additional long-range links (see Fig. 6.2) [9]. It is important to
note that, due to the abrupt rise of the latency values beyond criticality, even a
small right shift of the network critical value results in a huge reduction of the
average packet latency. Similarly, the achievable network throughput grows sig-
nificantly with the right shift of the critical traffic value. This phenomenon is at the
very heart of the optimization technique presented in this chapter. Our main
objective is to optimize the network performance (i.e. reduce the average packet
latency and increase the network throughput) by maximizing the value of the
critical traffic load through smart insertion of long-range links.

This chapter is organized as follows: In Sect. 6.2, we review related work,
while in Sect. 6.3 propose an algorithm for long-range link insertion. The routing
algorithm for the long-range links is given in Sect. 6.4. In Sect. 6.5, we discuss the
practical considerations related to the implementation of long-range links. Sec-
tion 6.6 discusses some energy-related issues, while Sect. 6.7 outlines possible
applications of the proposed technique. The experimental results appear in
Sect. 6.8. In Sect. 6.9, we summarize our contributions and indicate possible
directions for future work.

78 6 Application-Specific Noc Architecture Customization Using Long-Range Links

6.2 Related Work

Insertion of express channels to k-ary n-cube networks in a systematic way is
discussed in [4] where an interchange media is inserted periodically between the
processing nodes; further, they are connected by express channels to reduce the
network diameter and message latency. In [13], the authors propose express virtual
channels to close the gap between the packet-switched network and the ideal
interconnect. The proposed mechanism allows packets to bypass intermediate
routers along pre-defined virtual express paths. This approach reduces the delay
and energy consumption, while bringing the throughput close to that of a dedicated
wire. This improvement is achieved without using extra links, unlike the use of
express channels [4].

Previous work on links addition [9] investigate the effect of adding random
links to 2D mesh (and torus) networks under the assumption of uniform traffic. The
packets in the network consist of a single atomic entity containing the address
information only. Moreover, due to the infinite buffer assumption, the authors of
[9] do not deal with deadlock states explicitly.

In contrast to this prior work, we consider wormhole routing and routers with
bounded input buffers. Most importantly, instead of uniform traffic, we assume
application-specific traffic patterns and present an algorithm which inserts the
long-range links by considering the traffic patterns characteristics. Due to the
bounded input buffers, the additional long-range links may cause deadlock, so we
also present a deadlock-free routing algorithm which exploits the long-range links
in order to achieve the desired performance boost.

6.3 Long-Range Link Insertion Algorithm
6.3.1 System Model and Basic Assumptions

The system of interest consists of a set, T, of m X n tiles, interconnected by a 2D
mesh network,! as shown in Fig. 6.1. The tiles of the network (referred to as PESs)
are populated with processing and/or storage elements that communicate with each
other via the network. We do not make any assumption about the distribution of
the packet injection rates, but only consider the relative rate (or frequency) at
which different PEs communicate with each other.

Due to limited on-chip buffer resources and low latency requirements, we
assume wormhole switching. However, the results presented here are also appli-
cable to packet- and virtual cut-through switching. The routing algorithm for the

! The proposed technique is applicable to topologies for which a distance definition (as in
Eqgs. 6.7 and 6.8) exists. The following discussion assumes a 2D mesh, since it has less links,
hence, provides.more flexibility compared.to.more densely connected networks (e.g. torus).

6.3 Long-Range Link Insertion Algorithm 79

mesh network has to be minimal and deadlock-free, hence, XY routing is assumed
for the mesh network. The deadlock-free property is desirable for NoCs since
deadlock detection and recovery mechanisms are too expensive in terms of silicon
resources and may lead to unpredictable delays.

To minimally distort the regularity of the original mesh, the number of long-
range links that can be added to any router is limited to one. As such, we obtain
significant performance gain with minimal modifications on the initial topology.
The regular routers continue to use the default XY routing algorithm, while a new
deadlock-free routing algorithm is proposed for the routers that have extra links.

6.3.2 Problem Formulation

The communication volume between the PE located at tile i € T and the PE located
at tile j € T is denoted by V;. We compute the frequency of communication
between the PEs i and j, f;;, by normalizing the inter-tile communication volume:

. Vij
Vij.p,geT fzjzm (6.1)

P q#p

Inserting long-range links introduces an overhead due to the additional wires,
extra ports in the routers and repeaters used in the implementation of long-range
links. Hence, we need to have a precise measure of this overhead.

We measure the length of the long-range links, s(/), in multiples of basic link
units, which are identical to the regular links used in the mesh network, as shown
in Fig. 6.9. This measure also reflects the repeater costs, since the number of
repeaters required by a long-range link is given by s(/) — 1. For example, a resource
constraint of § means that the total length of the long-range links inserted to the
initial network consists of at most S units of standard links. Finally, the critical
traffic load at which the network enters the congested phase is denoted as /.
Equipped with this notation, we can state now the application-specific long-range
link insertion problem:

Given

o fiVi,jeT
e Maximum number of links that can be added, S
e The default routing strategy for the mesh network, R

Determine

e The set of long-range links to be added on top of the mesh network, Lg
e A deadlock-free routing strategy which governs the use of the newly added
long-range links,

80 6 Application-Specific Noc Architecture Customization Using Long-Range Links
such that

max(2.) subject to Zs(f) <S (6.2)

leLs

and at most one long-range link is added per router.

To give some intuition, the newly added long-range links are meant to maximize
the critical traffic value, A., subject to the total amount of available on-chip
resources. Differently stated, inserting long-range links provides increased
throughput and reduced latency compared to the original critical load, as shown in
Fig. 6.2. We note, however, that the objective of inserting long-range links should
be by no means limited to maximizing A.. On the contrary, other objective
functions, such as increased fault-tolerance, guaranteed service, etc., can replace
(or augment) the objective of maximizing 4.

6.3.3 Iterative Long-Range Link Insertion Algorithm

Figure 6.3 outlines our algorithm which inserts long-range links with the objective
of maximizing the critical traffic load A., subject to the available resources.

The algorithm starts with a standard mesh network and takes the communica-
tion frequencies (f;j in Eq. 6.1) between the network tiles, the default routing
algorithm (R) and the amount of resources allowed to use (S) as inputs. Then, the
algorithm selects all possible pairs of tiles (i.e. C(||T||,2) pairs, where ||T]| is the
number of nodes in the network), and inserts long-range links between them. After
inserting each long-range link, the resulting network is evaluated to find out the
gain obtained over the previous configuration. Since we seek to maximize A, the
gain is measured as the increase in the critical traffic load, as detailed below in

Sect. 6.3.4.
Routing algorithm
for mesh network

Utilization < S

Fig. 6.3 The flow of the
long-range link insertion
algorithm

Communication
frequencies, f,J

Available
resources, S

Generate
Yes routing data
Vs
Forall (i,j) i, €T
Find the - .
most Add a link from toj Output
. architecture &
beneficial routing files
link to add Evaluate the current
configuration
~ ¥

—E Update utilization }

6.3 Long-Range Link Insertion Algorithm 81

After the most beneficial long-range link is found, the information about this
link is stored and the amount of utilized resources updated. This procedure repeats
until all available resources are used. Once this happens, the architecture file and
routing data are generated for the new configuration.

6.3.4 Evaluation of the Critical Traffic Value

While the impact of the routing strategy, switching technique and network
topology on the critical point have been studied through simulation [8], no work
has been aimed at maximizing the critical traffic value subject to resource con-
straints. The major obstacle in optimizing the critical load comes from the diffi-
culty in modeling the variation of the critical value, as a function of different
design decisions.

Several theoreticians [9, 21] propose to estimate the criticality point of a net-
work using mean field theory models. The key idea is to reduce the estimation of
the network criticality to just one parameter which can be computed analytically,
much faster than simulation. This is important since using accurate estimates from
simulation is simply too costly to be used in any optimization loop.

In the following, we relate the critical load /. to the free packet delay t(, which
is the packet travel time when no other packet is present in the network. Let A(¢) be
the fotal packet injection rate at time t, i.e.

At) = ;Ai([), i is the injection rate of tilei € T (6.3)

In the free state, i.e. when the average of A(¢) is less than 4., the network is in a
steady-state. Hence, the average packet injection rate (1) is equal to the average
packet delivery rate, that is,

NHVC

A~ (6.4)

T(IV{?
where N, represents the average number of packets in the network and 7, is the
average time each packet spends in the network.

The exact value of 7,,. is a function of the traffic injection rate, as well as the
network topology, routing strategy, etc. While there is no available analytical
model for calculating 7,,., we observe that 7,,, shows a weak dependence on the
traffic injection rate when the network is in the free state. Hence, 7y can be used to
approximate t,,.. If we denote the average number of packets in the network at the
onset of the criticality by N, we can write the following relation:

ve’

NL‘
S o 2 (6.5)

To
This approximation acts also as an upper bound for the critical load /., since
70 < Tave (Ae). We note that this relation can be also found using mean field [9] and

82 6 Application-Specific Noc Architecture Customization Using Long-Range Links
distance models [30], where N , is approximated by the number of nodes in the
network, under the assumption that the utilization of the routers is close to unity at
the on-set of the criticality.

Since the number of messages in the network, at the onset of the criticality, is
bounded by the network capacity, N; ,, the critical traffic load and the average
packet latency are inversely proportional to each other. Indeed, if the average
packet latency decreases, the phase transition is delayed, as demonstrated in
Fig. 6.2, where the latency reduction is due to the presence of long-range links.
Our optimization technique uses the relationship between 4. and 7,,, to maximize
the critical load.

o Experimental Verification of the Eqgs. 6.4 and 6.5

For completeness, we verified Eqs. 6.4 and 6.5 experimentally, as shown in
Fig. 6.4. The dotted line shows the actual packet injection rate (4) for reference.
The solid line with the square marker on it is obtained for an 8 x 8 network under
hotspot traffic, as the ratio between the average number of packets in the network
and the average packet delay at that particular injection rate.

These plots clearly show that, before entering criticality, there is a good
agreement between the actual value obtained through simulation and the one
predicted by Eq. 6.4. As mentioned before, the exact value of the average packet
delay for a given load, 7(4), is found by simulation. The dashed line with trian-
gular markers in Fig. 6.4 illustrates the upper bound given by Eq. 6.5. We observe
that this expression provides a good approximation at lower data rates and holds
the upper bound property.

o Computation of 7,

For arbitrary traffic patterns characterized by the communication frequencies,
fi Vi,j € T, o can be written as:

8x 8 Mesh Network 8x 8 Mesh Network with Long-range Links
2 T r T 2
= : i i o (Il |
= N, /Ay, S —=-
b N /A ! A
A
‘f
1 1r j
0.5 0.5
0 i i i i 0 i i i ;
0 02 04 06 08 1 1.2 0 02 04 06 038 1 1.2

A (Packets/cycle) A (Packets/cycle)

Fig. 6.4 Experimental verification of Egs. 6.4 and 6.5 for a regular 8 x 8 mesh network and an
8 % 8 mesh with long-range links

6.3 Long-Range Link Insertion Algorithm 83

0= fi {d(i,j)(t, + tg + ty) + max(t; + 1) {%H (6.6)

it

where d(i,j) is the distance between routers i and j, and t,, t;, t, are the archi-
tectural parameters representing time needed to make the routing decision, traverse
the switch and the link, respectively [8]. Finally, L is the packet length and W is the
width of the network channel.

For a standard mesh network, the Manhattan distance (dy) is used to compute
d(i,j), i.e.

dM(iaj) = |ix _jx| + |iy _j)'| (6'7)

where subscripts x and y denote the x- and y-coordinates, respectively. For the
routers with long-range links, an extended distance definition is needed in order to
take the long-range connections into account. Hence, we use the following gen-
eralized definition:

du(i,)) no long—range link

min(dy (i,)), 1 + du(k,j)) if 1(i,k) exists (6.8)

i) ={
In this equation, I(i, k) means that node i is connected to node k by a long-range
link. The applicability of the distance definition is illustrated in Fig. 6.5. Note that,
the distance computation does not require any global information about the net-
work. Hence, the routing algorithm is decentralized and its implementation is
simple.

6.3.5 Small-World Properties of Networks Customized
Via Long-Range Links

As discussed in Sect. 6.3.2, the application-specific long-range links are inserted to
optimize the performance of standard grid-like networks by minimally altering
their structure. The customization procedure is inspired by the small-world effect.

Fig. 6.5 Illustration of
distance definition (see

Router (0,0) : id 0

Eq. 6.8) a4 G3) || Router (1,0) : id 1
" Router (1,2) : id 9
©2)f 12) 32|l | Router (2,2): id 10

| Then:

G| | d1,10)=3

| d(0,10) = min(4,1+d(9,10)
= min(4,2)

=2

O} A1] |2,1)

0,0 20| [(3.0)

ey’
[

aiEaE
aiaaa

84 6 Application-Specific Noc Architecture Customization Using Long-Range Links

Simply stated, the small-world networks combine the advantages of short inter-
node distance (which is a characteristic of random graphs) and high clustering
(which is primarily observed in regular graphs).

We note that we are not trying to demonstrate that the resulting network is
necessarily a small-world network, in a strict sense. In fact, the small size of the
networks we are dealing with and the limited number of additional links allowed
during the optimization process makes such a behavior hard to observe. Moreover,
by limiting the number of additional long-range links per router to just one link
prevents the emergence of true hubs which are omnipresent in many small-world
networks. Instead, our algorithm for inserting long-range links induces small-
world effects. More precisely, our algorithm decreases the average internode
distance significantly, while improving the clustering coefficient. The remaining of
this section demonstrates the impact of long-range links on these properties.

o Impact of long-range links on the average inter-node distance

In a network with application-specific traffic characterized by f;;, we compute the
average inter-node distance () as:

W= "f; d(i,j) (6.9)

i A

where f;; and d(i,j) are given in Eqs. 6.1 and 6.8, respectively.

Several theoretical studies [17, 28] assume uniform traffic, which turns out to be
a special case of Eq. 6.9 if f; =1/(n(n— 1)) Vi,j € T. The reduction in the
average internode distance due to the long-range links is analyzed for a 4 x 4 mesh
network under uniform, hotspot and multimedia (MMS) traffic. For hotspot traffic,
three arbitrarily selected nodes receive extra traffic compared to the remaining
nodes, while for the MMS benchmark the traffic pattern is extracted from an A/V
system [11]. More information about these traffic patterns is given in Sect. 6.8. In
all cases, the long-range links were inserted with a constraint of S = 12; this
translates into 4 long-range links for the networks under study.

After inserting the long-range links, under uniform traffic the average inter-
node distance drops from 2.67 to 2.32, as shown in Table 6.1. Considering that a
random network with 16 nodes and mean degree 3, would have p~ In(16)/
In(3) = 2.52, inserting long-range links indeed induces a small-world effect. For
the hotspot and MMS benchmarks, the improvement is larger; this is simply
because in these examples there is more room for optimization due to the skewness
of the traffic patterns.

Table 6.1 The average internode distance () before and after inserting long-range links to a
4 x 4 mesh network

Traffic pattern p without the long-range links p with the long-range links Gain

Uniform4 2.67 2.32 13.1 %
Hotspot4 2.65 2.17 18.1 %
MMS 1.98 1.21 38.9 %

6.3 Long-Range Link Insertion Algorithm 85

Table 6.2 The clustering coefficient before and after inserting long-range links to a 4 x 4 mesh
network

Traffic pattern Clustering Coefficient

Without LR links The proposed algorithm Alternative algorithm

Uniform4 0 0.05 0.21
Hotspot4 0 0.05 0.18
MMS 0 0.10 0.16

¢ Impact of long-range links on the clustering coefficient

Achieving a higher clustering compared to the random networks of exact same size
is another manifestation of small-world effect. The degree of clustering, i.e. how
tightly the nodes are interconnected in a network, is measured by the clustering
coefficient [28]. If the node i has n; neighbors and there are /; links between these
neighbors, then the clustering coefficient of node i, C;, can be expressed as:

21;

Ci=—r
I’l,'(l’ll' — 1)

(6.10)

The clustering coefficient of the entire network (Cy) is found by averaging the
clustering coefficients over all nodes. Hence, a large Cy implies that the nodes
situated closer to each other are highly connected.

The clustering coefficient in a mesh topology is zero because none of the
immediate neighbors of a given node are directly connected to each other. On the
other hand, inserting long-range links increases the clustering coefficient of mesh
networks. The impact of inserting long-range links on the clustering coefficient of
a 4 x 4 mesh network under uniform, hotspot and multimedia traffic is summa-
rized in Table 6.2. The increase in clustering coefficient is obtained as a by-
product of the proposed link insertion algorithm, since the algorithm does not
directly aim at improving the clustering coefficient. As explained in Sect. 6.3.4, we
insert the long-range link which improves the free packet delay the most. Another
alternative would be adding the link which gives the highest performance/cost
ratio. Such an algorithm obviously favors the addition of shorter links and, hence,
produces a higher clustering in the network, as shown in Table 6.2.

6.4 Routing with Long-Range Links

The routing strategy proposed in this section produces minimal paths towards the
destination by utilizing the long-range links effectively. The algorithm first checks
whether there exists a long-range connection to the current router, as shown in
Fig. 6.6. If there is no such link, the default XY routing algorithm is used.
Otherwise, the distance to the destination with and without the long-range link is
computed using Eq. 6.8. Since only local information is used when computing the

86 6 Application-Specific Noc Architecture Customization Using Long-Range Links

m (1,3)
ZEEE
1 ik [[
ool ol eall o

Use the default
routing
algorithm

Fig. 6.6 Des"”:ription of the Current router, i Set of long-
proposed routing strategy destination, j range links, Lg

Initial
network

There is a

long-range link

Long-range link
decreases d(i, j)

No

Yes

Deadlock free

No

Use the long
range link

distance, the proposed approach is scalable and provides global improvements in
the network dynamics. If the long-range link produces a shorter distance to the
destination, the algorithm checks whether or not using this link may cause dead-
lock before accepting it as a viable route. To guarantee freedom from deadlock,
some limitations on using long-range links are introduced by utilizing the turn-
model [10].

In the original mesh network, the links extend either along East-West (E-W) or
North-South (N-S) directions. Consequently, the basic turn model prohibits one
out of four possible turns to avoid cyclic dependencies. On the other hand, the
long-range links can extend in two directions, such as NE-SW, NW-SE, etc. For
example, the long-range link depicted in Fig. 6.5 connects two nodes with different
x and y coordinates and extends along NE-SW direction. As a result, using a long-
range link may result in a turn from one of the middle directions, NE, NW, SE, SW
to the one of the main directions N, S, E and W. Therefore, we need to prohibit
additional turns in order to avoid cycles caused by the long-range links.

In our model, we prohibit all turns from South. We also note that S-to-E and S-
to-W turns for the regular links are already prohibited by the default XY routing
algorithm. Finally, long-range links may introduce 180-degree turns. For example,
the shortest path between two nodes may involve a turn from a long-range link
entering the node from East to the regular link extending towards East (i.e. a W-to-
E turn). To break such cycles, 180-degree turns from South and West (180° turns
from negative directions) are also prohibited. As a result, we provide deadlock-free
routing by limiting the routing choices for the long-range links and refer to the
resulting strategy as South-Last routing.” Note that, we do not need to consider
turns from a middle direction to another one, since at most one long-range link is
connected to a node.

2_The other possible choice. that could be used with XY routing is North-Last routing.

6.4 Routing with Long-Range Links 87

N: 3n-y, 1
@ NW: 3n-y, 0 1 NE: 30,0
N\ Ve
\ | /
\ ‘ e
W: 2y, 2x_—1_ - (X y) — IE: %y, 3m-x
9
A
/ 1 ~
// ! \\
SW: 2y-1, 1 S 2' T SE: 2y-1, 1
N y- N
(b)
— 6,1 16,3 _ 6,5 .
0,3) ¢ "L(l,3) < 2,3 (¢ — (3,3
A 6,12 By 6,11 —¢ 101 610 . "2
51| [101 /5,1 |10 51| 100,277 10,1
! 2, %51
. 4 115118 24 , 51|y
41 g1 43 K s
0,2) [« ™ (1,2) [« = 22) € =1 (3,2
02) 4,12 ¢! (A’) w411 (‘1) 4,10 (‘:)
31| 11,1 “'\3,1 SJ3431 31 11,1 11,1
1Y 111 11,62:\ N
A A 2’1 %x A 4 2,3 !LJL 2’5 ‘LJ'
0,1) (¢ — (1,1) |4 — (2,1) ¢ : (3,1ﬂ
'y 2,12 2,11 1 2,104
L1| 1121 12,1 1,1 ’ 12,1
1,1 1,1
\ 4 \ 4 v A 4
0,1 X 03 _ 0,5 T
0,0) [— (1,0) ¢ — (2,0) ¢ — (3,0
0,12 0,11 0,10

Fig. 6.7 a Number assignment rule for node (x, y). b Illustration of numbering for a 4 x 4
network

In what follows, we prove formally that the proposed routing algorithm is
indeed deadlock-free. The proof can be skipped without losing the continuity of
the main ideas.

Theorem 1 The combination of XY routing for the routers without any long-
range link, and South-Last routing algorithm for the routers with (at most) one
long-range link on a mesh network is deadlock-free.

Proof A routing algorithm is deadlock-free if the network channels can be enu-
merated such that the algorithm always routes the packets along channels with
strictly increasing (or decreasing) numbers [5]. Using the notation in [10], we
assign each channel in a mxn grid a two-digit number (a,b),, where
r>max(3m,3n) and (a,b), = a x r + b. Figure 6.7a shows the enumeration of the

88 6 Application-Specific Noc Architecture Customization Using Long-Range Links

channels entering an arbitrary node with coordinates (x,y), where 0 <x <m — 1
and 0 <y <n — 1. The numbering scheme for a 4 x 4 mesh network with three
pairs of long-range links is illustrated in Fig. 6.7b.

It can be observed that the proposed routing algorithm forwards the packets
only to the channels with strictly increasing ordering. To prove that this is indeed
the case for all packets, we analyze each possible input to an arbitrary node in
Fig. 6.8a-h using the numbering scheme introduced in Fig. 6.7a. For instance,
Fig. 6.8a shows an long-range link input from NW direction. The outgoing long-
range link in the opposing direction can connect to node (x — ky,y + k,) where
I <k.<xand 1<k,<n—1—y. Investigating the channel numbers reveals that
the channels which do not result in strictly increasing ordering are prohibited by
the proposed algorithm.

In general, a long-range link originating from node (x,y) can be connected to a
node (x £ k,,y + k), where 1 <k, <x when the long-range link extends to neg-
ative x direction and 1 <k, <m — 1 — x when it extends to positive x dimension.
Likewise, 1 <k, <y when the long-range link extends to negative y direction
1<k,<n—1-—y and when it extends to positive y dimension.

Figure 6.8a-h show that the proposed algorithm routes the packets to channels
with increasing numbers for all possible inputs. Of particular interest are
Figs. 6.8a, b, h. These figures show that the turns that do not result in a strictly
increasing channel ordering are the turns from South, which are prohibited by the
proposed algorithm.

We have shown that the proposed algorithm always routes the packets along the
channels with strictly increasing numbers. As a result, it is deadlock-free. O

The final thing to consider is the possibility of a long-range link acting as a
traffic attractor and then becoming a bottleneck in the network. For this reason, we
assess the amount of traffic already assigned to a long-range link and route further
traffic over the link only if it is not likely to become a bottleneck. This method is
static and does not need feedback from the network. An alternate approach would
be to monitor the congestion level on the long-range link and the downstream
router and then route the packets adaptive manner using the permissible turns
depicted in Fig. 6.8.

6.5 Implementation of Long-Range Links

It is widely assumed that the top 2-4 metal layers can be reserved for the network
links [6, 22]. We expect that long-range links will also utilize the top metal layers.
In the following, we discuss several possible approaches for implementing long-
range links.

89

sndino paprwrad oY) A[uo moys sjopd Sururewar ayy ym ‘syurf ndino payqyord Yy sojoudp Aprordxa (e) ur uonoidop
Ay ‘Areo 104 "N wolj ul] Auy Y 'S woij yulp Auy § ‘g woij JuI| Auy J ‘A\ WOl uI[Auy 3 ‘gS woly yuI] 9Suel-3uoT p "M S woij yurj d3uer-Juo| 2
"IN wolj yul| 93uel-3uoT q ‘AN woij yul] a3uel-3uo B ‘umoys are apou Areniqie ue o) sindur 9[qissod [[e 10j s[ouueyd ndino [qissiudd 89 Sy

6.5 Implementation of Long-Range Links

N w0] &uy () § wog sy Luy (3) q wog JuT £y () 4 w0 W] A0 (3)
1 “pekug 0SbuE 1 Sqahug 1 Sqahug
L3 » b LR b ® t a % 4 Am
N L—. ’ TR .# «— Qi | 0BT __.. 7 0“vbug| &y g 7 0 Safeug
0 “pebug 0 “y+fug x-wg &g -1 TAL
(£%) & 2o AR et |”W (£5) ey - =
o 1-8z+xz4z I Hyax-ug A7 A Spexwghy (179TTRE L X Spexougky
I . l HE R4 | v O o’ ! §
1 L L} u
1 “hug T T R RS Ol L S T AT MY SR S tAR A R e T TR R W R (Y
A5 w0y yu a8uei-3uo(P) 44 S wog su 38ues-Suot (9) AN wog] a8uel-Sue(q) AN wog sun sBuel-Buo (B)
0 “qefeug | K-paug heug g Syebug 1 - g 1 G- T4ug
% ”,
~ ~ rd \
e e P
[167 1°T4g 1+xz7 ‘A7 [+x-wg A
L (A7) |m— d (£°X) (%)
T+xz Az) T+x-wg A7 T+xg Az) [+ewg Ay
' ! ? N
7 . ~
0 ‘Aug
1 1+g T 1+ ¢ T 1+ y.rmtﬂm

90 6 Application-Specific Noc Architecture Customization Using Long-Range Links

Fig. 6.9 Implementation of Logical Representation Implementation
long-range links using 1 1]

repeaters. Routers 1 and 3 are R1_11 - R2 AL R3 1

both connected by Router 2 —] — — — —
via the underlying mesh i

network and the inserted Insertion of

long-range link. The long- long-range link . o

range link consists of two H Rt || Re R3

regular links connected by a

repeater w

Long-range Link /‘ repeater extra bon

6.5.1 Traditional CMOS Implementation

In order to preserve the advantages of structured wiring, the long-range links are
segmented into regular, fixed-length, network links connected by repeaters. The
repeaters can be thought of as simplified routers consisting of only two ports that
accept an incoming flit, store it, and finally forward it to the output port, as illus-
trated in Fig. 6.9. The repeaters essentially pipeline the long-range links and pro-
duce routes which bypass the routers, while looking identical to the original paths
provided by the routers. The use of repeaters with at least 2-flit buffering capa-
bilities guarantees latency insensitive operation as discussed in [1, 2].

Another issue to consider is the increase in the size of the routers with extra
links due to the additional port. This overhead has to be taken into account while
computing the maximum number of long-range links which can be added to the
regular mesh network. Although there is no theoretical limitation on the number of
additional links a router can have, a maximum of one long-range link per router is
used in our approach. This way the regularity of the mesh network is minimally
altered, while still enjoying significant improvements over the standard mesh
network.

We also note that it is possible to use more aggressive signaling techniques to
implement long-range links without using the repeaters shown in Fig. 6.9. For
instance, in a recent study the authors propose current-mode signaling for long-
range links [18].

6.5.2 Optical Interconnects for Implementing
Long-Range Links

Optical on-chip communication for NoC has been recently proposed due to
increasing contribution of the interconnects to the overall power consumption and
increasing wire delay [3, 24]. The advantages of optical communication include
significant increase in bandwidth, a decrease in the power consumption, increased

6.5 Implementation of Long-Range Links 91

immunity to electromagnetic noises and temperature variations. On the other hand,
there are important issues such as developing fabrication steps compatible with
future IC technology and keeping the additional cost affordable. At the same time,
a sufficiently large optical-electrical conversion efficiency is required. If these
problems can be solved, long-range on-chip communication can greatly benefit
from optical interconnect, while the short distance communication is still achieved
through traditional copper interconnects.

6.6 Energy-Related Considerations

In this section, we investigate the proposed approach from an energy consumption
point of view. One can measure the energy consumption using the Ej; metric [31],
defined as the energy required to transmit one bit of information from the source to
the destination. Ejp; is given by:

Epis = ELbir + EBbif + ESbir (6 11)

where Eppi, Egpir and Egp;; represent the energy consumed by the link, buffer and
switch in the router, respectively.

The total energy consumption before inserting the long-range links can be
expressed as:

Ey =Y Vildw(i.j)EL, + (dw(i.j) + 1)Es,] + Y Vi Y Es,,(r) (6.12)
ij r

iy

where V; and dy(i,j) are the communication volume and Manhattan distance
between nodes i and j, respectively. The switching energy is summed up over all
the routers the message goes through but written separately to emphasize the
difference in router sizes. For example, due to the increased router arity, the switch
at a router with 5 I/O ports has a larger energy consumption compared to the
switch involving only 3 I/O ports.

Using a similar approach, the total energy consumption after the insertion of
long-range links can be expressed as:

Eye =Y Vildu(i,))Ew, + (du(ij) + DEg,]+ > Vi > Eg (1) (6.13)
7 :

ij

where E represents the switching energy after the insertion of the long-range
links. We note that the energy consumed in the links remains the same whether or
not the message uses the long-range links, since the total number of links traversed
remains the same. The same argument is also valid for the buffer energy con-
sumption, assuming that similar buffers are used in repeaters and routers.

On the other hand, the swifch energy consumption is affected, since some
messages are eventually routed through the routers with extra links, while some

92 6 Application-Specific Noc Architecture Customization Using Long-Range Links

others will be routed through repeaters and thus bypass several routers. In fact, the
latter scenario provides a reduction in the communication energy consumption due
to the elimination of the crossbar switch, while the former induces a penalty due to
increasing size of the router. Overall, we expect a small impact on the energy
consumption.

We evaluated the energy consumption before and after inserting long-range
links using the cycle-accurate worm_sim simulator [29] and an FPGA prototype.’
We observe that the link and buffer energy consumption increases by about 2 %
after inserting long-range links, while the switch energy consumption drops by
about 7 %, on average. Furthermore, the Orion model [26] integrated to our sim-
ulator shows about 5 % savings in the overall energy consumption. Finally, our
energy consumption measurements using a real FPGA prototype show that the
energy consumption is minimally affected by the insertion of long-range links [20].

6.7 Practical Use of Long-Range Links

Inserting application-specific long-range links enables a higher network through-
put and a lower average packet latency compared to a pure mesh architecture. As a
result, the application-specific long-range links can be employed in several
scenarios:

e First, when the application mapping is given, or there are tight constrains on
mapping the application to the network, inserting long-range links can greatly
enhance the performance of the regular mesh architecture. The proposed tech-
nique works also well in conjunction with an already existing mapping algo-
rithm (e.g. [11]) due to the moderate run-time requirements. For example, the
long-range link addition algorithm can be invoked after a permissible mapping
is obtained to see how much additional improvement can be obtained.

e The long-range links can also be exploited to achieve fault-tolerance or QoS
operation. For example, the use of a long-range link can be limited to a few
connections which provide guaranteed latency (or throughput) for a selected set
of nodes. Furthermore, the long-range links can also support multiple use-case
scenarios [15]. For example, a long-range link can provide guaranteed service
for some use cases, while serving the best-effort traffic for improved perfor-
mance during other use-cases.

e The improvement in network performance can be exploited to optimize the
system power consumption. For example, the operating voltage can be scaled
down while still achieving the same throughput of a pure mesh network of exact
same size. As a result, the overall power consumption can be minimized.

3 More details about the simulator and the prototype are given in Appendix A.2 and A.3,
respectively.

6.7 Practical Use of Long-Range Links 93

Finally, the long-range links can be considered in a reconfigurable context to obtain
a common architecture which can be optimized for a larger class of applications.

6.8 Experimental Evaluation of Long-Range Link
Insertion Methodology

The effectiveness of partial topology customization via the long-range link
insertion is demonstrated through an extensive experimental study involving
synthetic and real traffic patterns. For each benchmark, the standard mesh network
and the mesh network with a small number of long-range links inserted to it are
compared against each other. Sections 6.8.1-6.8.4 present simulation results
obtained using the cycle-accurate worm_sim NoC simulator [29]. The simulator
models the long-range links as explained in Sect. 6.5. In Appendix A.4, we
present our results obtained using an FPGA prototype.

The worst-case complexity of the technique (that is, the link insertion and the
routing table generation) is O(SN*), with 2 <o < 3. The run-time of the algorithm
for the examples we analyzed ranges from 0.14 s for a 4 x 4 network, to less than
half hour for an 8 x 8 network, on a Pentium Il machine with 768 MB memory
under Linux OS.

6.8.1 Evaluation Using Synthetic Benchmarks

We first demonstrate the effectiveness of adding long-range links to standard mesh
networks by using the hotspot and transpose traffic inputs. For hotspot traffic, three
nodes”* are selected randomly to act as hotspot nodes. Each node in the network
sends packets to these hotspot nodes with a higher probability compared to the
remaining nodes. For transpose traffic, on the other hand, each node communicates
only with the symmetric node with respect to the diagonal of the network. The
critical traffic load values for some 4 x 4 and 6 x 6 mesh (1y,.) and customized
(Are) networks, under hotspot and transpose traffic patterns, are given in Table 6.3.
We observe that inserting 4 long-range links to a 4 x 4 network (the resulting
network is shown in Fig. 6.1) under hotspot traffic makes the phase transition
region shift from 0.41 packet/cycle to 0.50 packet/cycle. Similarly, due to the
addition of long-range links, the average packet latency at 0.41 packet/cycle
injection rate drops from 196.9 to 34.4 cycles!

The variation of the network throughput and average packet latency as a
function of traffic injection rate are plotted for hotspot and transpose traffic in
Figs. 6.10 and 6.11, respectively. For the transpose traffic, the phase transition
region shifts from a throughput 0.35 packet/cycle to 0.52 packet/cycle. Given the

4 Throughout the chapter, the IDs of the hotspot nodes are: 5, 11, 12. For example, for the 4 x 4
network this translates.to.(1,1),(3,2),(0,3),-as.shown in Fig. 6.5.

94

Fig. 6.10 Traffic injection

Hotspot Traffic

6 Application-Specific Noc Architecture Customization Using Long-Range Links

w 500 T
rate versus average packet 3 =¥ 4x4 Mesh network i
3 —— 4x4 Mesh network with long-range links ;
latency and network 2 g0 e ag
throughput for hotspot traffic. 2 r
The improvement in the s i
critical point and latency & 300 £
values at criticality are 3 i g
indicated on the plots S 200 - .
o H
@ i
o }
g 100 g, N Vi
0 1 1 il i
0.2 0.3 0.4 0.5
Total packet injection rate (packet/cycle)

=¥ 4x4 Mesh nelwork
= 4%4 Mesh network with long-range links

0.3 0.4 0.5 0.6
Total packet injection rate (packet/cycle)

Network throughput (packet/cycle)

0.7

changes in the overall network dynamics; this is a huge improvement in network
capabilities. Likewise, with the addition of long-range links, the average packet
latency at 0.35 packet/cycle injection rate drops from 89.3 to 25.2 cycles.

It is interesting to observe that the improvement obtained for the 6 x 6 network
in Table 6.3, under the transpose traffic, is smaller compared to other cases. The
primary reason for this behavior is that some of the newly added long-range links
act in fact as traffic attractors. Since the proposed routing algorithm is not adaptive
in nature, i.e. it does not consider congestion in the channel links at run time, these
links eventually become bottlenecks in the network. This observation suggests that
developing an adaptive algorithm, at the expense of increased resources, has the
potential to improve the impact of long-range link insertion algorithm even beyond
the results presented here.

6.8.2 Scalability Analysis

To evaluate the scalability of the proposed technique, we performed several
experiments, with_network. sizes ranging from 4 x 4 to 10 x 10. For the 4 x 4

6.8 Experimental Evaluation of Long-Range Link Insertion Methodology 95

Fig. 6.11 Traffic injection 300 Transpose Traffic
rate versus average packet) =¥ 4x4 Mesh network
latency and network % = 4x4 Mesh Network with long-range links
throughput for transpose > P =
traffic £ 200 .'! i. 4
g : ;
] i i
g 100 i 51.9%.......K
e i :
g i i
: ™ s
2 P——-ﬂ! 3
0 1
0.1 0.3 0.5
Total packet injection rate (packet/cycle)
2 1 ; .
% H H -
B o8 : : bl
s s i v
s i :
=3 H H
Z BRI alSE e
=LY) SO S B : - ..
8 s : :
£ : : :
2 02l e Eoesctnenaiann]
=¥ 4x4 Mesh network
5 g ~—— 4x4 Mesh Network with long-range links
= 0 0.2 0.4 0.6 0.8 1 1.2 14

Total packet injection rate (packet/cycle)

Table 6.3 Critical load (packet/cycle) and latency (cycle) comparison for regular mesh and mesh
with long-range links

Critical load (packet/cycle) Latency at the critical load(cycle)

JMe ALc Lt (Zue) Li.(Zue)
hotspot4 0.41 0.50 196.9 344
hotspot6 0.62 0.75 224.5 38.2
transpose4 0.35 0.52 89.3 252
transpose6 0.54 0.55 165.9 116.7

Aume Critical traffic load value for pure mesh network

AL Critical traffic load value after inserting the long-range (LR) links

Ly (Aye) Average latency of the pure mesh network at traffic load Ay,

L (Amc) Average latency at traffic load Ay, after inserting long-range links

and 6 x 6 networks, 4 bidirectional links are inserted to the standard mesh con-
figuration. Similarly, for the 8 x 8 and 10 x 10 networks, 5 and 6 bidirectional
links are inserted, respectively. Figure 6.12 shows that the proposed technique
results in consistent improvements when the network size scales up. For example,
the critical load of a 10 x 10 network, under hotspot traffic, shifts from 1.18

Nel
[=}

6 Application-Specific Noc Architecture Customization Using Long-Range Links

ha
(=}
o

1.5

i Mesh network with long-range links
[Standard mesh network

] Standard mesh network [
Bl Mesh network with long-range links |

150 i — 1

24.8%

051
82.5% | 76.9% || 69.7%... 70.0% ||

annl

4 6 8 10

[54)
[=]

=

Average packet latency (cycles)
o
o o
L

4 6 8 10
Network size Network size

(a) (b)

Critical traffic load (packet/cycle)

Fig. 6.12 The improvement in the a critical traffic load and b average packet latency for
increasing network sizes

packet/cycle to 1.40 packet/cycle after inserting only 6 bidirectional long-range
links consisting of 32 regular bidirectional links total. This result is similar to the
improvements obtained for smaller networks. Figure 6.12a also reveals that the
critical traffic load grows with the network size due to the increase in the total
bandwidth. Likewise, we note substantial reductions in the average packet latency
across different network sizes after inserting long-range links, as shown in
Fig. 6.12b.

6.8.3 Comparison with Topologies of Higher Dimensionality

Finally, we note that customizing 2-D mesh networks with long-range links is a
more general approach than choosing a tori or other network topologies of higher
dimensionality, or simply inserting express links based on a fixed rule [4, 14].
Indeed, the on-chip implementation of these networks looks similar to the
implementation of a 2D mesh network with application-specific long-range links
except for a fundamental difference. The latter finds the optimal links to be
inserted based on a rigorous analysis, rather than by following a fixed wiring rule.
In fact, the application-specific customization with long-range links will generate
standard higher dimensional networks (or reduce to inserting by-pass links), if we
replace the link insertion algorithm with a static link insertion rule. As a result, our
technique is more general and can achieve a better performance compared to a
higher dimensional network, although it utilizes about the same or less resources.

To be more concrete, we implemented a 4 x 4 2D torus network with folded
links [6], and a mesh network with 8 uni-directional links generated by our
technique for a resource constraint threshold of § = 12. Our simulations show that
the critical traffic load of the network customized using our proposed technique is

6.8 Experimental Evaluation of Long-Range Link Insertion Methodology 97

4 % larger than that of the torus network. Moreover, the average packet latency in
our design, at 0.48 packet/cycle injection rate (which is close the critical load of
the torus network), is only 34.4 cycles compared to 77.0 cycles for the torus
network. This significant gain is obtained by utilizing only half of the extra links
needed by torus; indeed, inserting the most beneficial links for a given traffic
pattern makes more sense than blindly adding channels following a fixed rules,
which is precisely the case for the folded torus.

6.8.4 Experiments Involving Real Traffic

In this section, we evaluate the performance of the link insertion algorithm using
three realistic applications. The first two applications, auto industry and telecom
benchmarks, are retrieved from E3S benchmark suite [7] and mapped onto 4 x 4
and 5 x 5 networks, respectively, using an automated mapping tool. The third
application is a multimedia application (MMS) which includes an H263 video
encoder/decoder, an MP3 audio encoder/decoder pairs. This application is first
partitioned into 40 concurrent tasks and then assigned and scheduled onto 16 IPs
connected in a 4 x 4 mesh network [11]. The long-range links are inserted with a
constraint of 12 and 20 for the 4 x 4 and 5 x 5 network, respectively.

The variation of average packet latency and network throughput as a function of
traffic injection rates for the auto industry benchmark is given in Fig. 6.13. These
plots show that the insertion of long-range links shifts the critical traffic load from
0.29 packet/cycle to 0.33 packet/cycle (about 13.6 % improvement). Similarly, the
average packet latency for the network with long-range links is consistently
smaller compared to that of a pure mesh network. For instance, at 0.29 packet/
cycle injection rate, the latency drops from 98.0 cycles to 30.3 cycles giving about
69.0 % reduction.

Similar improvements have been observed for the felecom benchmark, as
shown in Fig. 6.14. Specifically, the critical traffic load is improved from 0.44
packet/cycle to 0.60 packet/cycle showing a 36.3 % increase due to the insertion of
long-range links. Likewise, the latency at 0.44 packet/cycle traffic injection rate
drops from 73.1 cycles to 28.2 cycles. Finally, a pure 4 x 4 mesh network running
the MMS application has a critical traffic load of 0.26 packets/cycle, while the
network customized using application-specific long-range links has a traffic load of
0.29 packets/cycle. Moreover, the average packet latencies at 0.26 packets/cycle
are 96.0 and 31.0 cycles for the original mesh and customized networks,
respectively.

Implementing long-range links requires inserting buffers in the repeaters. In
order to demonstrate that the savings are primarily coming from using the long-
range links, we also added extra buffers to the channels of the pure mesh network
with inserted links, equal to the amount of buffers utilized for the long-range links.

Table 6.4 summarizes the results for standard mesh network (M), standard
mesh network with extra buffers (MB), and the network with long-range links (L).

98 6 Application-Specific Noc Architecture Customization Using Long-Range Links

Fig. 6.13 Traffic injection
rate versus average packet
latency and network
throughput for auto industry
benchmark

Auto-industry Benchmark

=%=: 4x4 Mesh network
—— 4x4 Mesh network with long-range links
: [E

300

] T T T

100 e

Average packet latency (cycles)

|
0.1 0.2 0.3
Total packet injection rate (packet/cycle)

0.7
~w. 4x4 Mesh network :

= 4x4 Mesh network with long-range links

04 ________________ ______
0.3 [oeeeenenes

02

0.2 04 0.6 0.8 1
Total packet injection rate {packet/cycle)

Network throughput (packeticycle)

We observe that the buffers insertion improves the critical load by 3.5 % for the
auto industry benchmark. On the other hand, the corresponding improvement due
to long-range links is 13.6 % over initial mesh network, and 10 % over the mesh
network with additional buffers. Likewise, we note that due to inserting long-range
links, the average packet latency reduces by 69 % compared to the original latency
value and 57.0 % compared to the mesh network with extra buffers.

Consistent results have been obtained for the synthetic traffic workloads men-
tioned in the previous section and for the telecom benchmark. We report here only
the results for felecom benchmark since this reflects a real application. The results
in Table 6.4 show that, with the addition of extra buffers, the critical traffic point
shifts only from 0.44 packet/cycle to 0.46 packet/cycle. Inserting long-range links,
on the other hand, shifts the critical point to 0.60 packet/cycle which represents a
huge improvement in the network throughput capability. Similarly, the average
packet latency obtained by the proposed technique is almost 1/3 of the latency
provided by standard mesh and about 1/2 of the latency provided by mesh with
extra buffers.

6.8 Experimental Evaluation of Long-Range Link Insertion Methodology 99

Telecom Benchmark

- 5x5 Mesh network
—— 5x5 Mesh network with long-range links
I

Fig. 6.14 Traffic injection
rate versus average packet
latency and network
throughput for telecom
benchmark

-
-
L=

| 36.3%

61.5%

Average packet latency (cycles)
=]
(=]

a A
e

w
(=]

l
0.2 04 0.6
Total packet injection rate (packet/cycle)

—% 5x5 Mesh network
—— 5x5 Mesh network with long-range links |

. : /"":’, :
36.3% ; *__.g....---"

0.6

1

0.4

Network throughput (packet/cycle)

1
04 0.6 0.8 1 1.2 14
Total packet injection rate (packeticycle)

Table 6.4 Critical load (packet/cycle) and latency (cycles) comparison for pure mesh (M), mesh
with extra buffers (MB) and mesh with long links (L)

Critical load Latency at the
(packet/cycle) critical load (cycles)

auto-indust M 0.29 98.0

auto-indust MB 0.30 70.5

auto-indust L 0.33 30.3

telecom M 0.44 73.1

telecom MB 0.46 56.0

telecom L 0.60 28.2

6.8.5 One Architecture for All

Optimizing the NoC communication architecture for each target application may
be too costly, if the product volume is not sufficiently large to justify the opti-
mization effort. Therefore, it is desirable to leverage a single optimized archi-
tecture for a class of applications that share common communication
isti i i generating a composite description of the

100 6 Application-Specific Noc Architecture Customization Using Long-Range Links

- Let AppSet be the Set of Applications we target
- Reset the communication frequency between each pair of nodes 10 0, i.e., f;; =0 Vi,je T
- For each application in the Target Set of Applications AppSet (k € AppSet):

Begin

- Read in the application k;

- Let f;;(k) denote the communication frequencies corresponding to application k;

- Let the weight corresponding to application k be w(k) = 2 fi,j N

End 7
- For each application in the Target Set of Applications AppSet (k € AppSet):
Begin
- fij = fij + wk)xfi(k);
End

Fig. 6.15 Pseudo-code for generating the composite description for the target applications

target applications and feeding it to the long-range link insertion algorithm sum-
marized in Fig. 6.3.

To this end, we derive the communication frequencies each node in the network
(i.e.,f;j Vi, jeT, see Sect. 6.3.2 for the definition) using the pseudo-code given in
Fig. 6.15. Basically, we first generate the communication frequencies f;; corre-
sponding to each application in the target set. Then, the sum of the communication
frequencies is computed as a normalization factor. Once, we obtain the descrip-
tions of the individual applications, we derive the composite description as the
weighted sum of the individual applications, where the weights are simply the
normalization factors computed before. These weights ensure that each application
in the target set is equally represented. If we prefer to favor a subset of applications
(e.g. when their production volume is larger or they are more critical in terms of
performance), this can be achieved easily by manipulating these weights.

Once the composite description is available, we use it as the input to the long-
range link insertion algorithm and the architecture that is optimized for the target
class of applications is obtained. Intuitively, the long-range links will have a
positive impact on the performance for any application. In the worst case, which
happens when the long-range links are not utilized at all, it would not result in any
improvement. Our goal, however, is to quantify the performance improvement
obtained for each application running on the common architecture. To achieve this
goal, we used the uniform, hotspot traffic patterns studied in Sect. 6.8.1, the auto-
industry benchmark studied in Sect. 6.8.4 and MMS application studied in
Sect. 6.3.5. These examples are chosen, since all of them run on 4 x 4 NoCs.
Then, the following simulations are performed for this experiment:

e Each application is simulated on 4 x 4 pure mesh network;

e Each application is simulated on an NoC optimized particularly for that
application;

e Each application is simulated on the NoC optimized for the composite
description, i.e., on the common architecture.

6.8 Experimental Evaluation of Long-Range Link Insertion Methodology 101

Table 6.5 Comparison of the critical traffic load (packet/cycle) for regular mesh (column labeled
as Mesh), architecture optimized for a single architecture (column labeled as Optimized Archi-
tecture) and the common architecture obtained for all applications (column labeled as Common
Architecture)

Critical load (packet/cycle)

Mesh Optimized architecture Common architecture
uniform 0.68 0.71 0.72
hotspot 0.41 0.50 0.47
MMS 0.25 0.284 0.282
auto-industry 0.29 0.33 0.30

The critical traffic loads obtained for each of these cases are summarized in
Table 6.5. We make two key observations based on these results. First, for the
uniform, hotspot and MMS benchmarks the common architecture provides per-
formance improvement comparable to that of obtained with the architecture
optimized for a single application. This stems mainly from the (un-intentional)
similarity between the communication requirements between these benchmarks.
For example, more detailed analysis shows that three of the four long-range links
in the common architecture also exist in the architecture optimized solely for the
MMS application. Our second observation is the poor improvement obtained for
the auto-industry benchmark. Again, more detailed analysis shows that this
benchmark has considerably more skewed traffic pattern compared to other
benchmarks. Consequently, only one of the four long-range links in the common
architecture exists in the architecture optimized only for this benchmark. Since this
application does not benefit from the remaining links, we observe limited per-
formance improvement for this benchmark compared to other benchmarks.

In summary, we observe that significant performance improvements can be
obtained when using a single optimized architecture for a class of applications.
However, care must be taken when selecting the set of applications, as only
applications with similar communication requirements can benefit from a common
set of long-range links, as expected.

6.9 Summary

In this chapter, we have presented a novel design methodology for inserting
application-specific long-range links to standard mesh NoC architecture. It has
been analytically and experimentally demonstrated that additional long-range links
can increase significantly the critical traffic workload. We have also demonstrated
that this increase brings a significant reduction in the average packet latency of the
network, as well as substantial improvements in the achievable throughput. The
experimental results obtained using an FPGA prototype (see Appendix A.4)
support the findings reported in this chapter.

102 6 Application-Specific Noc Architecture Customization Using Long-Range Links
References

1. Carloni LP, McMillan KL, Sangiovanni-Vincentelli AL (2001) Theory of latency-insensitive
design. IEEE Trans Comput-Aided Des Integr Circ Syst 20(9):1059-1076
2. Chandra V, Xu A, Schmit H, Pileggi L (2004) An interconnect channel design methodology
for high performance integrated circuits. In: Proceedings of design, automation and test in
Europe conference, Feb 2004
3. Connor IO, Gaffiot F (2004) Advanced research in on-chip optical interconnects. In: Piguet C
(ed) Lower power electronics and design. CRC Press
4. Dally WJ (1991) Express cubes: improving the performance of k-ary n-cube interconnection
networks. IEEE Trans Comput 40(9):1016-1023
5. Dally W1J, Seitz CL (1987) Deadlock-free message routing in multiprocessor interconnection
networks. IEEE Trans Comput 36(5):547-553
6. Dally WIJ, Towles B (2001) Route packets, not wires: on-chip interconnection networks. In:
Proceedings of design automation conference, June 2001
7. Dick R Embedded system synthesis benchmarks suites (E3S). http://ziyang.eecs.umich.edu/
~ dickrp/e3s/
8. Duato J, Yalamanchili S, Ni L (2002) Interconnection networks: an engineering approach.
Morgan Kaufmann, San Mateo
9. Fuks H, Lawniczak A (1999) Performance of data networks with random links. Math Comput
Simul 51(1-2):101-117
10. Glass CJ, Ni LM (1992) The turn model for adaptive routing. In: Proceedings of ISCA, May
1992
11. Hu J, Marculescu R (2005) Energy- and performance-aware mapping for regular NoC
architectures. IEEE Trans Comput-Aided Des Integr Circ Syst 24(4):551-562
12. Kleinberg J (Aug. 2000) Navigation in a small world. Nature 406:845
13. Kumar A, Peh L, Kundu P, Jha NK (2007) Express virtual channels: towards the ideal
interconnection fabric. In: Proceedings of the international symposium on computer
architecture, June 2007
14. Loucif S, Ould-Khaoua M, Mackenzie LM (1999) On the performance merits of bypass
channels in hypermeshes and k-ary n-cubes. Comput J 42(1):62-72
15. Murali S, Coenen M, Radulescu A, Goossens K, De Micheli G (2006) A methodology for
mapping multiple use-cases onto networks on chips. In: Proceedings of design automation
and test in Europe conference, March 2006
16. Newman MEJ, Watts DJ (1999) Scaling and percolation in the small-world network model.
Phys Rev E 60:7332-7342
17. Newman M (2003) The structure and function of complex networks. SIAM Rev
45(2):167-256
18. Nigussie E, Lehtonen T, Tuuna S, Plosila T, Isoaho J (2007) High-performance long NoC
link using delay-insensitive current-mode signaling, Hindawi VLSI design, Special Issue on
Networks-on-Chip, vol. 2007, March 2007
19. Ogras UY, Marculescu R (2005) Energy- and performance-driven NoC communication
architecture synthesis using a decomposition approach. In: Proceedings of design, automation
and test in Europe conference, March 2005
20. Ogras UY, Marculescu R, Lee HG, Chang N (2006) Communication architecture
optimization: making the shortest path shorter in regular networks-on-chip. In: Proceedings
of design automation and test in Europe conference, March 2006
21. Ohira T, Sawatari R (1998) Phase transition in computer network traffic. Phys Rev E
58:193-195
22. Pamunuwa D, C")berg J, Zheng LR, Millberg M, Jantsch A, Tenhunen H (2003) Layout,
performance and power trade-offs in mesh-based network-on-chip architectures. In: IFIP
international conference on very large scale integration, Dec 2003

http://ziyang.eecs.umich.edu/~dickrp/e3s/
http://ziyang.eecs.umich.edu/~dickrp/e3s/

References 103

23.

24.

25.

26.

217.

28.

29.

30.

31.

Pinto A, Carloni LP, Sangiovanni-Vincentelli AL (2003) Efficient synthesis of networks on
chip. In: Proceedings of international conference on computer design, Oct 2003

Shacham A, Bergman K, Carloni LP (2007) The case for low-power photonic networks-on-
chip. In: Proceedings of design automation conference, June 2007

Srinivasan K, Chatha KS, Konjevod G (2006) Linear programming based techniques for
synthesis of network-on-chip architectures. IEEE Trans Very Large Scale Integr Syst
14(4):407-420

Wang H, Zhu X, Peh L, Malik S (2002) Orion: a power-performance simulator for
interconnection networks. In: Proceedings of annual international symposium on
microarchitecture, Nov 2002

Watts DJ (1999) Small Worlds: the dynamics of networks between order and randomness.
Princeton University Press, Princeton

Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature
393:440-442

Worm_Sim: a cycle accurate simulator for Networks-on-Chip. http://www.ece.cmu.edu/~ sld/
wiki/doku.php?id=shared:wormsim

Woolf M, Arrowsmith DK, Mondragon-C RJ, Pitts JM (2002) Optimization and phase
transitions in a chaotic model of data traffic. Phys Rev E 66:046106

Ye T, Benini L, De Micheli G (2002) Analysis of power consumption on switch fabrics in
network routers. In: Proceedings of design automation conference, June 2002

http://www.ece.cmu.edu/~sld/wiki/doku.php?id=shared:wormsim
http://www.ece.cmu.edu/~sld/wiki/doku.php?id=shared:wormsim
http://www.ece.cmu.edu/~sld/wiki/doku.php?id=shared:wormsim

Chapter 7

Analysis and Optimization

of Prediction-Based Flow Control
in Networks-on-Chip

While networks-on-Chip (NoC) architectures may offer higher bandwidth com-
pared to traditional bus-based communication, their performance can degrade
significantly in the absence of effective flow control algorithms. This chapter
presents a predictive closed-loop flow control mechanism, which is used to predict
the congestion level in the network. Based on this information, the proposed
scheme controls the packet injection rate at traffic sources in order to regulate the
total number of packets in the network. Finally, simulations and experimental
study using our FPGA prototype show that the proposed controller delivers a better
performance compared to the traditional switch-to-switch flow control algorithms
under various real and synthetic traffic patterns.

7.1 Introduction

While the NoC architectures offer substantial bandwidth increase and concurrent
communication capability, their performance can significantly degrade in absence
of an effective flow control mechanism. Flow control algorithms avoid resource
starvation and congestion in the network by regulating the flow of the packets
competing for shared resources, such as links and buffers [3, 5].

In the NoC domain, the term flow control is used almost exclusively in the
context of switch-to-switch [7, 13, 15, 21, 31] or end-to-end [27] transport pro-
tocols. These protocols provide a smooth traffic flow by avoiding buffer overflow
and packet drops. However, the flow control can also regulate the packet popu-
lation in the network by restricting the packet injection to the network [3]." This is
precisely the main objective of this chapter.

Switch-to-switch flow control algorithms, such as ON/OFF, credit-based and
ACK/NACK mechanisms, regulate the traffic flow locally by exchanging control
information between the neighboring routers. These approaches have a small

! This function is also referred as congestion control. However, following the convention in [3]
and [9], we do not make such a distinction.

U. Y. Ogras and R. Marculescu, Modeling, Analysis and Optimization 105
of Network-on-Chip Communication Architéctures, Lecture Notes

in Electrical Engineering 184, DOL: 10.1007/978-94-007-3958-1_7,

© Springer Science+Business Media New York 2013

106 7 Analysis and Optimization of Prediction-Based Flow Control in Networks-on-Chip

communication overhead, since they do not require explicit communication
between source/sink pairs. However, the switch-to-switch flow control does not
regulate the actual packet injection rate directly at the traffic source level but
instead, it relies on a backpressure mechanism which propagates the availability of
the buffers in the downstream routers to the traffic sources. Consequently, before
the congestion information gets the chance to reach the traffic sources, the packets
generated in the meantime can seriously congest the network. Moreover, wormhole
routing is prone to head of line (HOL) blocking which is a significant performance
limiting factor. HOL blocking happens when the packet header cannot propagate to
the next router due to lack of buffering space. When the HOL blocking occurs, all
subsequent packets remain blocked and thus the router output ports can starve.
Therefore, congestion becomes even more severe for networks that employ
wormbhole routing [6, 28].

End-to-end flow control algorithms, on the other hand, try to conserve the
number of packets in the network by regulating the packet injection rate right at
the source of messages. For example, in window-based algorithms, a traffic source
can only send a limited number of packets before the previously sent packets are
removed from the network. However, the major drawback of end-to-end control
algorithms is the large overhead incurred when sending the feedback information
[3]. Besides this, the unpredictable delay in the feedback loop can cause unstable
behavior as the link capacities increase [22].

7.2 Overall Approach

In this chapter, we present a predictive flow control algorithm which enjoys the
simplicity of the switch-to-switch algorithms, while directly controlling the traffic
sources, very much like the end-to-end algorithms. Towards this end, we first
present an ON/OFF traffic source model. During the ON state, the traffic sources
generate packets in a bursty manner until the entire message gets transmitted.
During the OFF state, on the other hand, the sources are silent, i.e. they either
process data or wait for new inputs. The knowledge of the target application
enables us to characterize the distribution of the ON state.

Next, we develop a novel router model based on state space representation,
where the state of a router is given by the amount of flits already stored at the input
buffers. Using the traffic source and router models, each router in the network
predicts the availability of its input buffers in a k-step ahead of time manner. These
availability values are computed via an aggregation process using the current state
of the router, the packets currently processed by the router, and the availability of
the immediate neighbors.

Since all predictions are based on data the routers receive directly from their
immediate neighbors, the computations are decentralized and no global data
exchange is required. Moreover, we note that the availability information computed
at time z is obtained by aggregating the availability of the immediate neighbors at

7.2 Overall Approach 107

time n — 1. This information, in turn, reflects the state of the routers situated two
hops away, at time n — 2, and so on so forth. Therefore, due to the aggregation
process the local predictions actually reflect the global view of the network.
Finally, the traffic sources utilize the availability of the local router to control the
packet generation process and avoid excessive injection of packets in the network.

7.3 Related Work

From a flow control perspective [5, 9], most of the work presented in the NoC
domain relies on the switch-to-switch flow control; this is primarily due to the
large overhead incurred by the end-to-end flow control algorithms. A comparison
of the fault-tolerance overhead of various flow control algorithms employed in
NoCs can be found in [25]. In that paper, the authors consider buffer and channel
bandwidth allocation in presence of pipelined switch-to-switch links and analyze
varying degrees of fault tolerance support, resulting in different area and power
trade-offs.

We note that, in real applications, the best-effort (or non-real time) and
guaranteed service (or real time) traffic may coexist. The Aethereal network
architecture presented in [27] employs the end-to-end flow control for guaranteed
service in addition to the basic link-level control. Similarly, the SPIN architecture
in [1] also uses credit-based flow control where buffer overflows at the target end
of a path are checked at the source.

The work in [10] also provides guaranteed services on top of best-effort traffic
using prioritization of flows. A quantitative comparison between this connection-
less scheme and a connection-oriented scheme is presented in [11]. The authors
conclude that the connection-less scheme offers more stable end-to-end delay and
it is able to provide guaranteed latency for individual flows.

Nostrum NoC architecture presented in [19] has two dimensional mesh topology
and employs an adaptive, deflective routing. In deflecting routing, the incoming
packet is routed to one of the free output channels belonging to a minimal path. If all
the channels belonging to minimal paths are occupied, then the packet is misrouted.
This increases message latency even in the absence of congestion and bandwidth
consumption [2, 8, 14]. Moreover, when there are no available output channels, the
entire packet needs to be stored; this requires buffers large enough to store the
packets. Nostrum deals with this by fixing the packet size to 1-flit. However, this
requires putting the header information such as destination address to each packet.
Hence, this results in a large overhead and poor bandwidth utilization.

Unlike the Nostrum architecture, our approach supports packets with arbitrary
length. We employ wormhole routing and deterministic shortest path routing
algorithms. Finally, Nostrum handles both best-effort and guaranteed latency
traffic. The guaranteed service is provided through virtual circuits implemented
using looped containers and temporally disjoint network concepts which require a
synchronous design (i.e..a.common sense.of time across the network). As opposed

108 7 Analysis and Optimization of Prediction-Based Flow Control in Networks-on-Chip

to this, our proposed technique targets best-effort traffic. Hence, our technique
cannot be used to provide guaranteed services per se. However, when a mechanism
for the guaranteed service traffic is in place, the proposed technique can be used in
conjunction with this service to fully exploit the bandwidth not utilized by the
guaranteed service traffic.

Congestion control is well studied for classical networks [3, 9, 22, 26]. For
instance, the authors of [22] develop a decentralized control system, where the
sources adjust their traffic generation rates based on the feedback received from the
bottleneck links. A predictive explicit-rate control mechanism is presented in [26]
where the authors consider a single bottleneck node and infinite buffering
resources. The sources adjust their traffic rates using the congestion information
received from the bottleneck node via control packets.

Injection limitation techniques are studied in the context of parallel computer
networks to avoid network saturation and cope with deadlock. The authors of [17]
use the number of busy output channels in a node as a measure of level of
congestion. If the number of busy output channels exceeds a properly selected
threshold value, then the router prevents injection of new messages. Since this
threshold is a function of the traffic pattern and packet sizes, the authors adjust it
dynamically as a function of network load. The authors in [2] survey a family of
mechanisms for congestion control in wormhole networks. In the first technique,
congestion is measured as the ratio between the number of free virtual channels
and total number of useful virtual channel that could be used by a certain message.
If this ratio is larger than a threshold which should be tuned manually, then the
packet is injected to the network. In a second technique, packet injection is per-
mitted if all physical channels have at least one virtual channel free or at least one
physical channel has all its virtual channels free. Finally, the third method com-
putes the number of flits sent through each virtual channel in a certain time interval
to detect network congestion. If a channel is busy and the number of flits sent is
less than a threshold, then the channel is considered congested. In case congestion
is detected, packet injection restrictions are applied at the local node. The time
interval and threshold need to be tuned, as in the first mechanism.

These techniques rely on local feedback, hence they lack knowledge about global
information. On the other hand, the authors in [28] present a global congestion
control scheme based on time-outs. In this scheme, each node monitors the time the
header flit stays in the source queue. If the waiting time is larger than a threshold, the
node sends a congestion signal to its neighbors. All the nodes receiving the con-
gestion message limit packet injection and share this information with their own
neighbors. The technique presented in [29] aims at detecting congestion in early
stages by taking the global conditions into account. The fraction of full virtual
channel buffers of all routers is used as the congestion metric. The congestion data
collected at each node is then disseminated to all other nodes through an exclusive
side-band reserved for this purpose. The authors develop an all-to-all communi-
cation mechanism for dissemination of congestion information with guaranteed
delay bounds. However, this mechanism is specific to the particular network
topology. and.its_generalization to other topologies is not straightforward [12].

7.3 Related Work 109

The approach we present in this chapter is different from previous work in a
number of ways. First, our technique is computationally light since it relies on
local data transfers, similar to the basic switch-to-switch flow control. At the same
time, our mathematical formulation enables us to predict the available buffering
space in the network without assuming any particular traffic pattern or network
topology. Due to the aggregation process performed at the routers, the information
exchanged between the switches actually reflects the global view of the network.
Furthermore, since the predictions reflect the state of the network k steps ahead in
time, the packet sources across the network can sense a possible congestion sit-
uation early on and then adapt in order to avoid excessive packets injection to the
network.

7.4 System and Traffic Source Modeling
7.4.1 System Model and Basic Assumptions

We assume the network nodes consist of processing elements (referred to as PEs)
and routers which allow nodes to communicate by exchanging packets across the
network. We consider wormhole routing so the packets are divided into flits. The
length of a packet (S) is measured by the number of flits it contains. For conve-
nience, the flit size is assumed to be equal to the physical channel width (W). No
assumption is made about the underlying network topology.

In order to avoid packet loss, a basic link-level ON-OFF flow control mecha-
nism is implemented in the routers [5]. The proposed predictive control technique
works together with this link-level mechanism to control directly the behavior of
the traffic sources.

7.4.2 Traffic Source Model

Traffic injection rate into the network is the main knob for source control.
Therefore, an accurate model of the input traffic is necessary for the flow con-
troller. Such a model will not only show how the input traffic can be handled, but
also describe its impact on the packet delay in the network. Towards this end, we
observe that the NoC nodes can be in two different states:

OFF STATE: The PE is either processing data or waiting for new data. While
in this state, the PE does not generate traffic (hence the name OFF) as shown in
Fig. 7.2.

ON STATE: The PE injects packets to the network so the traffic source and its
corresponding state are referred to as ON. In this state, the source injects packets in
a bursty manner until the message is completely transmitted.

110 7 Analysis and Optimization of Prediction-Based Flow Control in Networks-on-Chip
7.4.2.1 A. Experimental Justification for the ON/OFF Traffic Model

To support this observation with measured data, we collected traces from the
sources in the MPEG-2 encoder design presented in [16]. The MPEG-2 encoder
data flow graph and its NoC-based implementation is depicted in Fig. 7.1. Fig-
ure 7.2a shows the traffic generated by the Frame Buffer module which stores the
frames reconstructed using the previously encoded frames. The Frame Buffer
module alternates between ON and OFF states. During the OFF state, it waits for a
read request from the Motion Compensation module, as shown in Fig. 7.1a. Hence,
no packet is generated during this period. Once a read request is received, the
Frame Buffer module prepares a packet containing the next macroblock to be
processed and injects the packet to the network; hence the module switches to the
ON state and stays in the that state until all the requested data is transmitted to the
Motion Compensation module.

In Fig. 7.2b, we investigate the traffic generated by the Inverse Discrete Cosine
Transform (IDCT) / Inverse Quantization (IQ) module at a larger time scale. This
module receives macroblocks from Discrete Cosine Transform (DCT) / Quanti-
zation (Q) module and performs inverse quantization and inverse discrete cosine
transform to produce the reconstructed frame.

Since encoding the Intra (I) frames does not require motion estimation and
compensation, IDCT / IQ module receives and processes packets at a very high
pace. Consequently, we observe bursty ON periods with small OFF periods in
between (time scale 5 x 10°-6.8 x 10* ns in Fig. 7.2b). On the other hand,
encoding Predicted (P) frames is much slower in our design. For this reason, the
IDCT / IQ module waits longer for new blocks to be processed and experience
longer OFF periods.

We also note that the bursty nature of the on-chip traffic has been observed by
other researchers. For instance, the traffic model considered in [20] consists of
bursts (i.e., ON) and silent (i.e., OFF) periods. Similarly, the long-range dependent
(LRD) behavior of on-chip multimedia traffic is demonstrated and studied in [30].

Motion Frame Motion
Est. Buffer Comp.

(b)

Fig. 7.1 a The data flow graph of the MPEG-2 encoder in [16] and b its NoC-based
implementation are shown. The average values of ON and OFF periods (FoN_ave, FOFF _ave)s il
number of cycles, are also shown in a

7.4 System and Traffic Source Modeling 111

Traffic Generation of Frame Buffer Module . Traffic Generation of "IQ & IDCT" Module
5 g 2 T T T T T T T T
3 @ Bursty On Peripds while | ' ' ' '
> a2 processing Intia(l) Frames | | | | |
= Q ! I ' | i
5 15} & 1.5 [T - - - e - - - - - -
c] e A !
e £ A :
sy c 1 TR B (I
i= o 1 U 1 1 [|
k] £ I I I I I I
o 1 1 1 1 1 1
8 2 i i i i i I
< 05} £ o5 P B | - [E—
= Py i i i] i
I] Longer OFF Period whi i !
i~ S 1 ger eriod while pr¢cessm 1
] & | Predicted(P) Frames j |
£ o o g L s L L L L
5 6 7 8 o 10 112 13 1
. . x10
Time (Nanoseconds) Time (Nanoseconds)
(a) (b)

Fig. 7.2 a Traffic injection by the Frame Buffer module is shown. It can be observed that the
module switches between ON and OFF periods. b Traffic injection by the Inverse Discrete Cosine
Transform/Inverse Quantization module is plotted for a longer time scale. Bursty ON periods are
followed by long OFF period due to long data waiting time

It is a known fact that ON-OFF traffic sources with heavy tailed distribution of ON
(or OFF) times gives rise to LRD traffic [23].

7.4.2.2 B. Characterization for the Distribution of ON/OFF Periods

Let the discrete time stochastic process A(¢),t € Zt denote the instantaneous flit
injection rate at time f. The cumulative traffic volume generated up to time
t (denoted by V(7)) is given by:

Vit)y=V(—1)+At), V(0)=0,reZzZ" (7.1)

In the ON state, the flit injection rate A(¢) is constant and equal to channel width, i.e.
Aon = W bits/s. If a header flit is injected to the network at time 7, one can see that
Ato + A) # 0 for 0<A<S, where S is the packet size in flits. Similarly, when the
PE is in the OFF state, one can get an idea of how much longer the OFF state will
continue, given the amount of time already spent for processing and type of pro-
cessing done by the PE. Therefore, the inter-arrival times are not memoryless and so
the flit injection process cannot be modelled as a Poisson process. Consequently, we
need to modify the classical ON/OFF [23] model to work for NoC traffic sources.

Distribution of ton

The duration of the ON state is determined by the size of the packets generated
by the node and /Aon; specifically, fon = [SW/lon]| where, again, S is the length of
a packet (number of flits) and W is the physical channel width (W bits are trans-
mitted per flit). While Aon is constant, S depends on the particular packet (or
packets) generated by the source after completing a certain task. In an NoC, the
type of the tasks performed by each PE and the size of the resulting message are
typically known at design time. For example, a DSP core implementing DCT/
IDCT operations in a multimedia chip, can only produce the cosine or inverse

112 7 Analysis and Optimization of Prediction-Based Flow Control in Networks-on-Chip

cosine transforms of a fixed size data block. Hence, S can take only certain discrete
values, usually known at design time. Note that, this is in stark contrast with a
general purpose network, where a node can generate a much wider range of
messages. As such, we model the probability mass function Foy as:

F()N([) tON <t ZP ton = l (72)

We can actually compute Foy(), since the communication volume between the
network nodes and /oy are known at design time.

Distribution of topp

The duration of the OFF state is the sum of two random variables. The first is
the processing time of the PE, 7,,.; this can take certain discrete values, based on
the number of different tasks implemented by the PE. Therefore, 7, is a discrete
random variable with discrete probability mass function:

Fproc(t) p tpmc > ZP tpmc - l

The second component of topr is the waiting time #,,;; for new data, before the
node cannot start processing. Unlike fon and 7., the waiting time #,,,; can take a
wide range of values as it depends on the latency in the network. When #,,,. can
take n different values, the distribution of zorr can be expressed as a function of
the waiting time, p(t,,,;; <1), as follows:

FOFF ZP tyait < T — tk|(tpr0c = tk))P(tproc = tk) (73)

In general, it is difficult to compute the distribution of #,,;, since it depends on the
latency experienced in the network. However, the predictive flow controller pre-
sented in this chapter depends only on the distribution of the 7oy, as explained in
Sect. 7.6.

7.4.3 Predictive Control of Traffic Sources

Suppose that the ON states of several traffic sources overlap and lead to temporary
congestion in the network. Consequently, starting at time #, the packets generated
by source i cannot be delivered to their destinations. In this scenario, source i will
continue to inject packets to the network until it senses congestion, say at time
to + J. The number of flits injected during this time is given by:

to+0

t) = min Z A1), ZBT

=1ty

7.4 System and Traffic Source Modeling 113

AME)
foy A(f): The injection rate without the controller
— . J
OFF [ON OFF ON .. A, n(®):The injection rate with the proposed controller
—— ; — ¢
tproc | Lyt tprac | A: Delay due to the control action
I I
kwm(t)l 1 L, Waiting time without the controller
| -
| t,,qic: Waiting time with the controller
OFF_ ON OFE - % ON @ >t Processing time at the PE

proc*

i Y t
tproc ! Al twait tpruc I

Fig. 7.3 Illustration of the ON-OFF source model and the control action. By delaying the start of
the ON period, the waiting time in the network can be reduced

where the first element in the tuple represents the total number of flits that can be
generated by the source, while By is the available buffering space along the path
from source i to the congested router. If the interval (¢,) covers the ON period of
the source, it is likely that the source will continue to inject packets until it senses
the backpressure effect due to the buffer starvation. This, in turn, can further
increase the number of packets in the network and hence make the congestion
more severe.

Since there are many sources sharing the same network resources, it is extre-
mely important to minimize J; this can be achieved by predicting the possible
congestion before it becomes severe and propagating this information to all traffic
sources. Since the buffer space availability at the routers may indicate congestion,
the traffic sources can send a packet to the router only if its availability of greater
than zero. Otherwise, the traffic source can delay the packet injection until the
resource availability improves, as illustrated in Fig. 7.3.

Delaying the packet injection can effectively help regulating the total number of
packets in the network, hence the average packet latency. While the precise time
for packet injection is difficult (if not impossible) to find at the design time, an
online predictor can guide the packet generation at the source in order to utilize the
network resources in the best possible way.

7.5 State Space Modeling of NoC Routers

To obtain accurate predictions for the available buffering space at the routers, we
also need a good model for the NoC router. Traditionally, the network research has
been focused on directly computing the router delay [4, 24]. Unlike previous work,
our goal is to predict how many flits the router can accept over the next k time

114 7 Analysis and Optimization of Prediction-Based Flow Control in Networks-on-Chip

yim) ¢,(n)

ul(n)l 4 X = [xl,xz,x3,x4]? State
+—la,n) Xl(n)% a,(n) U ={u,uy,u5,u,]" Input
—p
cy(n) Y= [yl, Yas Vs y4]? Output of the
@ 0,(n) X,(n) router
Y4 0,(n) u,(n) T
< . <'|:|:|I‘- 0=[01,02,03704]' Qutput of the
ID:I" Switch > input ports
u 0,(n) . J¥ Availability of
X4(n) 05(n) LR input p};)rts
= c=| |¥ Availability of
=1{C[,CysC3,Cy |-
ay(n) XM a,(n) |—» PTTIT he neighbors
v 111 (n) Bz[b ,b,,b,,b].TBuffer space of
M) yym P e input ports

Fig. 7.4 The state variables, inputs and outputs of a 4-port router are shown

steps. For this reason, the parameter of interest is the occupancy of the router input
buffers.”

We propose a state space representation of a NoC router driven by stochastic
inputs, as shown in Fig. 7.4. The state of the router at time n is given by the
number of flits in its input buffers; that is:

X(n) = [x1(n),x2(n),...,xp(n)]" (7.4)

where xp(n) is the state of the input port P (i.e., the total number of flits stored in
all of the input buffers associated with port P) and ‘T’ denotes the transposition
operation. For instance, a router with d neighboring routers and one local PE
connection has (d + 1) ports. Hence, X(n) is a (d + 1) x 1 vector.

The input received at port P, at time n, is denoted by up(n). up(n) is equal to 1,
if a flit is received at time n, and is O otherwise. Similarly, the output from port P is
represented by yp(n), where yp(n) = 1 implies that a flit is transmitted to the
downstream router, at time n. Consequently, the input and output processes of the
router are given by the following P x 1 vectors:

U(n) = [uy(n),uz(n), . . ., up(n)]T7
Y(n) = [yl (n),yz(n), i '7yP(n)]T

Next, we model how the flits are read from the input buffers. op(n) = 1 means that
one flit is read from the input buffer at port P, and the vector O(n) = [0 (n),

(7.5)

...,OP(n)](T) represents the outcome of reading process from the input buffers.

2_A similar_model for the output buffers can be, also developed.

7.5 State Space Modeling of NoC Routers 115

Note that this is different from the outputs Y(n) of the router. The output of the
input buffers goes through the crossbar switch and then ends up at one of the router
output ports (Fig. 7.4).

As a result, the knowledge of either Y(n) or O(n) provides information about the
other, given the connections in the crossbar switch. So, the router can be described
by an integrator, where the next state is determined by the current state, current
input and current output processes, as follows:

X(n+1) =IpypX(n) + U(n) — O(n) (7.6)

Router stability

The router described by Eq. 7.6 can become unstable (i.e. the state grows
unbounded), if the average arrival rate to the router is greater than the rate at which
the router can serve any given packet. In practice, however, the input buffers are all
finite. Hence, in order to avoid packet loss, no more flits are accepted by the link-
level flow control when the buffers are full. As a result, the router model given in
Eq. 7.6 can be refined as:

X(n+ 1) = IppX(n) + [U(n)H(n)] — O(n) (7.7)

where H(n) = [h(b; — x1(n)), h(by — x5(n)), ..., h(bp — xp(n))]". h(x;) is the unit
step function (i.e. A(x;) = 0if x; <0, and h(x;) = 1 otherwise), and b, to bp
represent the capacity of each input buffer. We also emphasize that [U(n)H(n)]
represents the element-wise product in this equation; it is used hereafter for
notational simplicity.

Finally, solving Eq. 7.7 with respect to a known state X(ny), gives the state at
time n + ng as

n—+ng

X(n+no) =X(no) + Y ([UGH()] - 0()) (7.8)

j=no+1

Obviously, the router described by Eq. 7.8 has a bounded response. However,
since such a control does not limit the source injection directly, the input buffers
will remain full for most of the time, if the average arrival rate becomes larger than
the service rate of the router. This, in turn, results in blocked links and large delays
in the network. One could regulate the traffic injection by an open loop controller
[5]. However, this solution does not solve the congestion problem completely,
since the packets may experience congestion due to the overlaps between the ON
periods of the traffic sources even under a light load. For instance, consider a 4 x 4
2D mesh network running hotspot traffic.> Although the traffic load is kept low
such that the input buffers of the most congested router are empty more than 80 %
of time and the buffers become full only about 1 % of time (see Fig. 7.5a), about

3 Under the hotspot traffic, the nodes in the network receive packets with uniform probability,
except.-a-few (in.our experiments.4) randomly selected nodes that receive some extra traffic.

116 7 Analysis and Optimization of Prediction-Based Flow Control in Networks-on-Chip

4000

Router Delay Histogram

o 1. | |
_‘g KT IT11] feereeeneaeens J
Eo.s i

s 2000

e

2 ok

1000

: 1 2
0 Buffer occupancy 0

3
Port number 4

200 400
Latency (cycles)

(a) (b)

Fig. 7.5 a Buffer utilization and b delay histogram of a router

18 % of the packets experience delays more than twice as large as the average
delay, as shown by the delay histogram in Fig. 7.5b. Such packets will not only
block the network resources, but also affect the other packets as well. As a result,
we cannot merely rely on such an open-loop control scheme so, in what follows,
we show how exactly the router model presented in this section can be used to
implement a predictive flow controller which regulates the traffic injection to the
network.

7.6 Prediction-Based Flow Controller

Collecting congestion data at the routers and delivering this data to the traffic
sources for flow control may cause large communication overhead; so it is not a
scalable approach. Moreover, unpredictable delays in the feedback loop of flow
control algorithms prevent the timely transmission of the congestion information
and control signals. To mitigate this problem, we propose a prediction-based
control which relies on the traffic source and router models developed in Sects. 7.4
and 7.5, respectively. These models enable us to predict the availability of any
router at a future time step, as described next.

7.6.1 Availability Predictor

We use the conditional expectation of the state at ny + k, given the state at time no,
ie. X (no + k|ng), as the k-step predictor for network state [18]:

X(ng + klng) = E[X(no + k)|X(no), U(no)]

7.6 Prediction-Based Flow Controller 117

Using Eq 7.8, we have:

n+ng

X(no + klno) = X(no) + Y (E[[U()H()]Ino] — E[O()|no]) (7.9)

j=no+1

where E[.|ng] stands for E[.|X(ng), U(ng)] (for notational simplicity). To compute
the k-step forward prediction, we need the expected value of input and output
processes, given the current state and input. If sufficient processing power is
available (e.g. when the predictor is implemented in a data macro-network with
plenty of resources), then Eq. 7.9 can be directly used to estimate the conditional
mean values of the input and output processes to predict the state at ng + k.
However, for NoCs we have to keep the area overhead as small as possible. For
this reason, we use Eq. 7.9 to predict how many flits a given input port can accept,
over the following k steps, rather than dealing with the absolute value of the state.
We call the number of flits the input port P can accept, over the next k steps, as
the availability of port P and denote it by ap(ng, k). ap(ng, k) simply consists of the
(I) sum of the number of empty slots in the buffer at time ny + k, and (1) the
number of flits that are expected to be admitted in the following k steps, i.e.

(1) (1)
no+k
ap(no, k) = by — %,(no + kfno)+ > Eluy()h(by — x,()) Ino]

j=no+1

If we define the availability vector as A(ng, k) = [a;(no, k), . ..,ap(no, k)] and B =

[b1,ba, ..., bp, }T is the vector containing the depth of each input buffer, then we
can find A(ng, k) as:

no+k
A(no,k) = B = X(no +klno) + »_ E[[UG)H(j)]|no] (7.10)

j=nop+1
Next, we can substitute X (n + k|ng) in Egs. 7.9-7.10 and obtain A(ng, k) as:

no+k

A(no, k) =B —X(no) + Y E[O(j)|no] (7.11)

j=no+1

Intuitively, B — X(ng) represents the availability at time (ny), while the last term is
the expected number of flits that will be read from the router in the interval
[no + 1,n9 + k]. Since a new flit can be written to the buffer for each flit being
read, the sum of these terms gives the availability for the interval [ng, no + k.
The expected value of the read process from the input buffers (that is, the last
term in Eq. 7.11) can be approximated using the router output Y(j) as follows:

118 7 Analysis and Optimization of Prediction-Based Flow Control in Networks-on-Chip

g, 1™ gy, pt)
no+k (no) (no) | k+no
. 82,1 B 2 :
> Elo()ln] = | °? ’ ST OEYG)ng (7.12)
ot O [e
gp, 10 g, plm)

where the coefficients g; (o) reflect the state of the crossbar switch and channel
allocation in the router. Computation of these coefficients are illustrated in
Sect. 7.6.2 using a concrete example. If we let G(ng) = {gix(no)}, then Eq. 7.11
can be written as:

no+k
A(no,k) = B = X(no) + G(no) Y E[Y(j)|no]
j=no+1
Note that Z;i:fﬂ E[Y(j)|no] is the expected number of flits transmitted by the
router in the interval [ng + 1,no + k]. However, this represents nothing but the
availability of the immediate neighboring routers. In other words, instead of
predicting the number of flits transmitted over the next k steps, we aggregate the
availability information already predicted by the neighboring routers. As a result,
the availability of a router is updated using the following equation:

A(I’lo,k) =B - X(l’lo) + G(l’lo)C(VlQ — l,k) (713)

where the vector C(ng — 1,k) denotes the availability of the immediate neighbors
predicted at time ny — 1, as illustrated in Fig. 7.6 (see also Fig. 7.4).

In summary, the availability of the routers for the interval [ng,ng + k| are
predicted using the empty buffer slots at time ny, the state of the crossbar switch
and the availability of the neighboring routers using Eq. 7.13 Hence, the com-
putations depend on only local information. At the same time, the availability
information computed at time »n is obtained by aggregating the availability of the
immediate neighbors at time n — 1. This information, in turn, reflects the state of

Updated availability to the »m ¢,(n)
neighboring routers win l 4 ‘f T
. I T r
I g |
I cy(n) I
l 1
: = Switch *DI["? :
. 4-bit dedicated |
l a@.(n) wires R
1 o >
- a;(n) fs :_ L
1 1‘ T ¢,(n) Availability data from the
() L neighboring routers
3

Fig. 7.6 Exchange of the availability information between the neighboring routers

7.6 Prediction-Based Flow Controller 119

the routers situated two hops away, at time n — 2, and so on so forth. Therefore,
due to the aggregation process the local predictions actually reflect the global view
of the network.

7.6.2 Practical Implementation of the Predictor

Since all the input buffers in the network are initially empty, the availability values
are initialized to the sum of buffer capacities and the prediction step, i.e.

A(0,k) =B+k[1,1,....]7,, (7.14)
According to Eq. 7.13, a router needs the number of free slots in its input buffers
(B — X(ny)), the state of the crossbar switch (G(ng)), and the availabilities from
the neighboring routers (C(ny — 1,k)). The routers keep track of the number of
free slots in the input buffers and the state of the crossbar switch internally. On the
other hand, they receive the availabilities of the neighboring routers through
dedicated control wires, as depicted in Fig. 7.6. The number of these dedicated
wires determine the maximum availability value that can be transferred between
the neighboring values. For instance, in our implementation we use 4 parallel
wires, as shown in Fig. 7.6; this means that we can transfer 4 bits of information
over these wires. Hence, the maximum availability value that can be transferred is
24 —1=15.

Once a router receives the availabilities from the immediate neighbors through
dedicated connections, it needs to determine how to distribute these availability
values to its input ports. This distribution is achieved according to Eq. 7.13, where
the coefficients g; reflect the state of the crossbar switch. The details of this
distribution process are provided in Fig. 7.7.

The first step towards computing the availabilities is to initialize the availability
of each input port with the number of free slots in the corresponding input buffer
(i.e. the first term in Eq. 7.13), as shown by the box labeled with “1” in Fig. 7.7.
We note that this term gives the zero-order approximation of the availabilities,
when no input is received from the neighbors. After this initialization, the avail-
ability of the neighboring routers are processed as described in the box labelled
with “2” in Fig. 7.7. For each output port j, the predictor checks whether there
exist a connection through the crossbar switch between that port and any input port
i. If there is a connection, then the number of flits that are expected to use this
connection (A in box 2, in Fig. 7.7) is determined using the packet length available
in the header flit and the number of flits that are already transmitted. If A is greater
than the availability of output port j (i.e. ¢;), then ¢; flits are allocated to input port
i. Otherwise, A flits are allocated to input port i, while the remaining (i.e. ¢; — A) is
distributed uniformly to all input ports except port j. Port j is excluded, since a
packet cannot leave the router using the same port it arrived, i.e. 180° turns are not
possible due to shortest path routing. In case the output port j is not connected to

120 7 Analysis and Optimization of Prediction-Based Flow Control in Networks-on-Chip

For each input port i: 1 For each output port j: 2
a=b,—x(n,); | Read ¢;from neighbors;
L4
(i.c. initialize the availabilities to S R L SR SRS SR
the first term in Equation 7.13.) A=Expected number of flits using this connection;|
if (A>c¢))
a=a;+c;
else
a=a;+A;
c _pool=c _pool+(cj—A);
end for else
For each input port i: 3 end for if
a=a;+ common_pool >> 2; else
(i.e. uniformly distribute the ¢ common_pool =common_pool +¢;;
availabilities tha.t are not (i.e. if there exist a connection from input port i to output
allocgt?d to any input port to the port j, allocate the availability of output port j to the
remaining ports.) current connection. Otherwise, add it to a common pool.)

Fig. 7.7 Practical implementation of the predictor

any input port, then the whole availability ¢; is distributed uniformly to all input
ports except port j, as described by the outer if statement in box 2, in Fig. 7.7.

Example 1: Assume that a time ng, the depth of the input buffers, their occupancies
and the availability values received from the neighboring routers are given as
follows:

Local | 4 0 0
North | 4 4 8
B= West |4]|,X(ng)=|0]|,C(no)= |3
South | 4 0 8
East |4 0 8

We further assume that the crossbar switch connects the North input port to the
West output port, and 4 flits in the North input port are waiting to traverse the
crossbar switch (i.e. A = 4).

Computation of availabilities

Next, we explain the computation of availabilities according to the pseudo-code
in Fig. 7.7. This description also shows how the algorithm is implemented. We
start by initializing the availabilities to B — X(ny), i.e. the number of empty slots at
time ng : A = [4,0,4,4,4]".

Next, we distribute the availabilities of the neighboring routers to the input
buffers. Since the West output port is connected to the North input port and A > 3,
the availability of the West output port is added to the North input port. Hence, the

availability vector becomes: A = [4,3,4,4, 4]T.

7.6 Prediction-Based Flow Controller 121

No input port is connected to the North, South and East output ports. Therefore,
their availabilities are distributed uniformly to all input ports. For example, after
the 8-flit availability from the North output port is distributed to Local, West, South
and East input ports, the availability vector becomes: A = [6, 3,6, 6, 6]T.

The computation of the availabilities can be written in matrix notation (similar
to Eq. 7.13), as follows:

From port L N W S E To port
4 0 0 8/4 0 8/4 8/4 L
4 0 0 3 8/4 8/4 N (7.15)
A= (4| —-|0|+ |0 8/4 0 8/4 8/4 N
4 0 0 8/4 0 0 8/4 S
4 0 0 84 0 8/4 0 E

The first two components correspond to the initialization step, i.e. B — X(np). In
the last term, each column describes how the availability from each output port is
distributed. For example, the first column is all zeros, since the first column of
C(np) is zero. On the other hand, the 8-flit availability from the North port is
distributed uniformly to Local, West, South and East input ports, as described by
the second column. Likewise, the fourth and fifth columns (which denote the
availabilities from South and East ports) are uniformly distributed. However, all
availabilities from the West output port go to the North input port, as described by
the third column. We note that the entries in each column sum up to the avail-
abilities obtained from the neighbors. Similarly, sum of the availabilities in each
row is added to the corresponding port. Finally, Eq. 7.15 can be rewritten by
factoring C(ng) out such that it takes the form of Eq. 7.13:

o o o o o1]"
1/4 0 1/4 1/4 1/4
0O 1 0 0 0
1/4 1/4 1/4 0 1/4
1/4 1/4 1/4 1/4 0
B—X(ny) + G(n) C(ng — 1,k)

S
I

I N NN
+

oo o0 W oo O

Hence, the components of the matrix G(g;) in Eq. 7.13 reflect the distribution
process as demonstrated in this example.

7.6.3 Using Prediction for Network Control

The overall operation of the proposed flow controller in summarized in Fig. 7.8.
Each router in the network updates its availability periodically by aggregating the

122 7 Analysis and Optimization of Prediction-Based Flow Control in Networks-on-Chip

ﬁroposed Flow Control Algorithm \

For all routers in the network For all sources in the network
s ST T T T T T -
| | nitialize the Availability |] | \
| ; 1 o
: Receive c; to ¢, | I : - 1 T YES l
I | Determine coefficient of G | | | = |
[¥ L — no |
| Update A | Iy Delay|¢ l
\ Iy Nt |
N e N _7
roa, is the availability of the local router connected to the source J

Fig. 7.8 Operation of the proposed flow control algorithm is illustrated

data received from the immediate neighbors. As a result, the availability of a local
input port connected to a traffic source reflects the backpressure from all of the
downstream routers. In the absence of the proposed flow controller, a traffic source
switches freely from OFF state to ON state, whenever it needs to inject a packet to
the network. As opposed to this, the traffic sources check the availability of its host
router, before entering the ON state. In analogy with wireless networks, the
sources listen before transmit, i.e. sense the congestion in the network through the
local router. As such, when a traffic source sees that the input port connected to it
has zero availability, it delays the generation of new packets until the availability
of the port becomes greater than zero, as shown in Fig. 7.8.

Since the congestion information propagates in the network through aggrega-
tion, prediction step k is selected as the diameter of the network. In this way, the
timely transmission of the prediction to the traffic sources is guaranteed, since the
information exchange between the neighboring routers is achieved by a small
number (i.e. logy(ap(0,k))) of dedicated control wires and the availability signals
do not experience queuing delays.

7.6.4 On the Stability of the Proposed Flow Control
Algorithm

The proposed control technique regulates total number of packets in the network.
In this section, we analyze the stability of the total number of packets in the
network and show the network is indeed stable.

Let the average number of packets in the nth cycle be S(n). We note that, S(n)
is the sum of the average number of packets at all ports of all routers, i.e.

7.6 Prediction-Based Flow Controller 123

S(l’l) = Z Z x,_’l-(n).

Yrouter r Vport i
The dynamics of the average number of packets in the network can be written as
S(n) = S(n— 1) + Input(n — 1) + Output(n — 1) (7.16)

where S(n — 1) is the average number of packets in the previous cycle, while
Input(n — 1) and Output(n — 1) denote the average number of packets injected to
and ejected from the network, respectively. The average number of packets ejected
from the network can be approximated as:

S(n—1)

Output(n — 1) = (7.17)
where t is the average time the packets spend in the network. Intuitively,
S(n — 1)/ is the average rate of ejection (it gives the average number of packets
ejected in the (n — 1)th cycle when multiplied with 1 cycle duration). This
approximation is quite useful, since it vanishes as S(n — 1) approaches to zero as
expected without using any nonlinear function.

The average number of packets injected to the network is determined by the
processing/storage node and the controller. We note that the controller does not let
the nodes to inject more packets than the available slots in the network. Let us
express the total network capacity as:

Capacity = Z Z b,

Vrouter r Vport i

where b, ; is the capacity of the buffer in router 7, port i in terms of number of flits.
Then, the average number of packets injected to the network in the (n — 1)th cycle
can be expressed as:

Input(n — 1) =1 x (Capacity — S(n — 1)) (7.18)

That is, a fraction of the available buffering space in the network (Capacity — S(n — 1))
determined by 0 </ < 1 is accepted to the network by the controller. [is a function of
the network traffic and current congestion level. Intuitively, the total number of
packets accepted to the network (Input(n — 1)) is inversely proportional with the
current number of packets in the network (S(n — 1)). Moreover, Input(n — 1) van-
ishes as S(n — 1) reaches the network capacity. Hence, the controller induces a
negative feedback. The dynamics of the average number of packets in the network
(Eq. 7.16) can be rewritten using Eqs. 7.17 and 7.18, as follows:

S(n—1)

S(n) =S(n—1)+1x (Capacity — S(n — 1)) — .

(7.19)
S(n) = <1 —l—i)S(n — 1) + 1 x Capacity

124 7 Analysis and Optimization of Prediction-Based Flow Control in Networks-on-Chip

We note that the discrete time system defined by Eq. 7.19 is stable if and only if
the eigenvalues of the state transition matrix, i.e., 1 — 1 — % in our case, are within
the unit circle. Hence, the condition for stability can be written as:

1
—I<l1-1--<1
T
(7.20)
1 1
——<Il<2 —-
T T

The left hand side of this equation is trivially satisfied, since / > 0. For the right
hand side, we know that the average time the packets spend in the network (7) is
larger than 1 cycle, so 2 — % > 1, which implies . Therefore, the stability condition
expressed in Eq. 7.20 is satisfied; so the average number of packets in the network
is stable under the proposed control scheme.

7.7 Experimental Results

In this section, we demonstrate the effectiveness of the proposed flow control
technique using an audio/video system complying with the H263.1 standard, as
well as synthetic benchmarks which are all mapped to a 4 x 4 2D mesh network.
Wormhole routing and deterministic XY routing algorithm is used throughout the
simulations. The simulations are performed using a custom cycle-accurate NoC
simulator which implements a basic ON/OFF switch-to-switch flow control, the
ON/OFF traffic sources and the flow control scheme.

The simulations are repeated for a range of buffer sizes in routers and local PEs.
The results reported next are obtained for 4-flit input buffers in the routers and 100-
flit local memory in the host PE.* The average packet latency reported in this
chapter includes the latency experienced due to the local memory (i.e. the source
queuing delay), and network latency. The network latency denotes the time the
packet travels in the network before being ejected. Finally, we also present
experimental results obtained using the FPGA prototype.

7.7.1 Audio/Video System

We first used the audio/video system described in [13] to evaluate the potential of
the proposed algorithm for real applications. The target system includes an H263
video encoder, an H263 video decoder, an MP3 audio encoder, and an MP3 audio

* Note that the local memory in the host PE is not part of the router. The 100-flit local buffer is
used to emphasize that (i) its size is finite and (i7) PEs sense the backpressure from the network
for the switch-to-switch flow.control.

7.7 Experimental Results 125

Multimedia Traffic

—o—Without the proposed controller
_|——With the proposed controller

140

120
100
80

607

40 ¥

Number of packets in the network

Simulation time (cycle) x 10

Fig. 7.9 Variation of the number of packets in the network over time for multimedia traffic.

Table 7.1 The reduction in the average packet latency and number of packets in the network due
to the proposed flow control algorithm are indicated

Switch-to-switch control The proposed flow Reduction
only control X
Ave. latency 149 (112) cycles 47 (12) cycles 3.2
Max. latency 897 (774) cycles 466 (404) cycles 1.9
Standard deviation of latency 173.8 (156) cycles 55.7 (46) cycles 3.1
Ave. # of packets 94 packets 29 packets 32
Max. # of packets 129 packets 52 packets 2.5
Standard deviation of # of 24.7 packets 7.2 packets 34

packets

The latency values are the sum of the latencies experienced at the source queue and in the
network. The average latencies experienced at the source queues are also given (in parentheses)

decoder. It is partitioned into 40 concurrent tasks and then these tasks are mapped
to the 4 x 4 2D mesh network. Finally, traffic traces obtained from real video and
audio clips are used to determine the communication patterns among the pro-
cessing cores in the network.

The audio/video system is first simulated using only the switch-to-switch flow
control. When the offered load is about half of the maximum achievable
throughput, the average and maximum packet latencies in the network are found to
be 149 and 897 cycles, respectively. After that, the simulations are repeated with
the proposed flow controller in place. As shown in strictly increasing, the average
packet latency becomes 47 cycles, while the maximum packet latency drops to 466
cycles. Table 7.1 summarizes also the queueing delay experienced at the traffic
sources (shown separately inside parentheses). We observe that the average source
queuing delay reduces from 112 to 12 cycles with the use of the proposed

126 7 Analysis and Optimization of Prediction-Based Flow Control in Networks-on-Chip

Packet latency histogram
without the proposed controller
i i)

Packet latency histogram
with the proposed controiler
i | i

100000 100000

1

! ‘
10000 flbe- - - -+ ----- bomoos 4emooes 10000 [l -7 = Ao o

‘ ‘

1000

1000

100 100 W = === = = = = = = e

Number of packets
Number of packets

10

200 400 600 800 1000
Average packet latency (cycle) Average packet latency (cycle)

() (b)

200 400 600 800 1000

Fig. 7.10 Histogram of the packet latencies for the Audio/Video traffic without (a) and with
(b) the proposed flow controller. Note that the y-axes of the plots are in log-scale. A significant
improvement due to the flow-control mechanism can be observed

controller. Similarly, the maximum value of the source queuing delay and the
standard deviation drops significantly as a result of the proposed controller.

This huge reduction in packet latencies is mainly due to the reduced number of
packets in the network. As mentioned before, unlike the switch-switch flow con-
troller, the proposed controller regulates the number of packets in the network
directly. As such, the average number of packets in the network drops from 94 to
29 packets which is about a 3.2x reduction, as summarized in Table 7.1. Like-
wise, the maximum number of packets in the network and the standard deviation
of the number of packets in the network drop by 2.5x and 3.4 x, respectively.

We further investigate the number of packets travelling through the network as
a function of time in Fig. 7.9. Without the flow controller, the number of packets
quickly rises to about 100 packets and oscillates around the average value (94
packets) with a standard deviation of 24.7 packets. On the other hand, the proposed
controller provides about 3.2x reduction in the average number of packets and
3.4x reduction in standard deviation, as summarized in Table 7.1 and plotted in
Fig. 7.9. The variation in the packet latency and number of packets observed in the
absence of the proposed controller show that the network can oscillate between
congested and free traffic due to the overlap in the ON periods of traffic sources, as
discussed in Sect. 7.4.3.

To better understand the effects of the controller, we further analyze the his-
togram of the packet latencies (Fig. 7.10). We notice that, for the network without
the proposed flow controller, about 50 % of the packets experience longer delays
than the average delay (i.e 149 cycles). The packets located at the tail of the
distribution in Fig. 7.10a are the main cause for this poor performance. The
technique we propose prevents the packets that are likely to experience such long
delays from entering the network. Indeed, as depicted in Fig. 7.10b, the latency
histogram is pushed significantly towards left; so about 91 % of packets experi-
ence less than 100 cycles latency. We observe that there are no packets with
latency more than 466 cycles, if the proposed controller is used. Moreover, the
number of packets with latency more than 100 cycles drops quickly due to the

7.7 Experimental Results 127

—_ -
o 300 S 120
& =©-Without the proposed controller = =©-Without the proposed controller
o =0—With the proposed controller § =0—With the proposed controller
> | | | P | | |
§ 2007 T T T PR) A
= i i i o | i i
E R 2 o
I R R R S A
% : : : B : : :
= G ‘ ‘ 5 | ‘ ‘
o d ' i o | I
E 0 : L L S 0‘ f . !
0.1 0.15 0.2 2 0.1 0.15 0.2
Offered traffic (packets/cycle) Offered traffic (packets/cycle)
(a) (b)

Fig. 7.11 a Average packet latency and b number of packets in the network are plotted as a
function of the offered traffic

proposed controller. On the other hand, half of the packets experience latency
longer than 100 cycles in the absence of the proposed controller. Besides this, there
are packets with as high as 900 cycles latency.

Since the audio/video application we consider includes strong access locality,
the average hop count for this application on the 4 x 4 mesh network is only 1.98,
while the average hop count for uniform traffic would be 2.67. For applications
with less access locality, the number of packet contentions; therefore, the
improvement due to the proposed controller is expected to be larger.

7.7.2 Synthetic Traffic

Additional experiments are performed for uniform and hotspot traffic patterns to
further assess the effectiveness of the proposed controller. First, we compare the
performance of a 4 x 4 2D mesh network under hotspot traffic with and without the
proposed controller. The average packet latency in the network is plotted as a
function of the packet injection rate in Fig. 7.11a. We observe that without the
flow controller, the network becomes congested as the packet injection rate
increases. The reason for this behavior is revealed in Fig. 7.11b. Indeed, in
absence of a traffic controller, the number of packets in the network grows at an
increasing pace as the traffic injection rate increases. The flow controller, on the
other hand, effectively limits the number of packets injected to the network, as
depicted in Fig. 7.11b. This, in turn, results in significant improvements in the
average packet latency. Finally, Fig. 7.11a, b demonstrate that the average packet
latency is proportional to the average number of packets in the network and justify
once more controlling the packet injection as an effective means for improving the
NoC performance.

128 7 Analysis and Optimization of Prediction-Based Flow Control in Networks-on-Chip

Fig. 7.12 Variation of the o 200 Hotspot Traffic
number of packets in the E ! :
network over time for the o
hotspot traffic. The proposed 2 160 [~
controller reduces the average = g
number of packet in the = 120 g+ L
network and their variation 5 —+— Without the proposed controller
. Lo 2 __les i i | With the proposed controller
over time significantly o 80 . , -
o
«“
° a0 ;
o
a
E o f : i : i
E]
z 0 0.5 1 1.5 2 25 3 3.5

Simulation time (cycle) x 10

Table 7.2 The reduction in the latency and number of packets in the network due to the proposed
flow control algorithm

Switch-to-switch control The proposed flow control Reduction
only (packets) (packets) (x)
Ave. # of packets 151 25 6.0
Max. # of packets 189 45 4.2
Standard deviation of # 24.6 6.2 4.0

of packets

Similar to the multimedia traffic, we monitored the number of packets in the
network when the packet injection rate was about half of the maximum
throughput. The mean and variance of the number of packets in the network is
significantly reduced with the proposed controller, as depicted in Fig. 7.12. More
specifically, the average number of packets in the network drops from 151 to 25
packets resulting in 6 x reduction, while the maximum number of packets in transit
decreases from 189 to 45 packets. Furthermore the standard deviation of the
number of packets is reduced from 24.6 to 6.2, as summarized in Table 7.2.

7.7.3 Impact of the Local Buffer Size on Performance

The PEs write the packets that will be transmitted over the network to a local
memory in the network interface. Then, the local router reads the packets from this
memory. In general, the buffering space available at the local PEs is much larger
than the buffering space at the routers. Nevertheless, local buffering space has also
a finite value and may fill up as a result of the backpressure from the network.
When the local memory at the PE becomes full, the PE cannot write to this
memory. Since no packets are dropped, the PE pauses in this situation.

In this section, we compare the performance of the predictive controller and
switch-to-switch control for various buffer sizes in the local PE. For the switch-to-

129

7.7 Experimental Results

I9[[0U0D
96'T 44 061 4% ¥6'1 24 €61 ¢y pasodoid ay1 yum
I9[[0U0D
pasodoxd
71°0 L1T 1€°0 8S1 €70 901 SLO 08 o41 oyt
(s27042) Sursned (527949) (527240) Suisned (s27040)Koudne] (527240) Juisned (s27042)Aoudle] (s27240) Sursned (527942)
Ad oAy Aoudje| oAy dd PAY Ay Ad PAY Ay Ad oAy Adoudje] oAy
NP-008 1P-00¢ NP-001 NP-0§ 9718 1onq Hd [e30

POZLIPWIWINS QIB SIZIS
KIowowr [00] JUSISIP 10§ Io[jonuod pasodoid oy Yirm pue Jnoyim (S)e1 duyer) 2724o/s1ayond () J8) dyyen jodsioy ay) 10§ Kouaje| 1oxoed aSe1eAy €L Qe

130 7 Analysis and Optimization of Prediction-Based Flow Control in Networks-on-Chip

switch control, the average packet latency at a given traffic injection rate increases
considerably with increasing local buffer size, as summarized in the first row of
Table 7.3. Switch-to-switch control is less effective for large local buffers, since a
large number of packets can be generated before the PE feels the backpressure.

In Table 7.3, we also give the average number of cycles the PEs pause. We
observe that the PEs pause on average 0.75 cycles, when the local memory size is
50 flits. The PEs pause very rarely, since the network is not heavily congested. We
also observe that this number is reduced as the local memory size is increasing.
This is also expected, since the PEs are affected by the backpressure less for large
local memory.

In contrast to the switch-to-switch control, the flow controller uses directly the
availability information predicted by routers as a measure of congestion level.
Therefore, the traffic sources do not rely on backpressure from the network.
Consequently, the flow controller performs well over a wide range of local PE
sizes, as shown in the last row of Table 7.3. Table 7.3 also shows that the flow
controller causes PEs to pause more often than the switch-to-switch control. This
is also expected, since the controller delays the packet generation. However, we
observe that the average time the PEs pause is about 1.9 cycles, as shown in
Table 7.3. Hence, the sum of the latency and pausing time is still much smaller
when using the flow controller.

7.7.4 Scalability of the Approach

The computation of the availabilities at the routers depend only on the local
information received from the immediate neighbors. Therefore, the computational
complexity depends only on the number of ports in the router, not on the size of
the network.

In order to demonstrate the performance of the flow control technique for larger
network sizes and provide a more quantitative evaluation, we present some new
experiments involving 4 x 6 and 6 x 8 networks. Figure 7.13a, b show the average
packet latency as a function of the effective traffic injection rate for the 4 x 6 and
6 x 8 networks, respectively. We note that, the x-axes of these figures show the
effective traffic injection rates, which take the PE pausing (discussed in
Sect. 7.7.3) into account. Since the flow controller limits the number of packets in
the network to prevent congestion, the total traffic injection rate is limited, as
shown in Fig. 7.13. In particular, the maximum effective injection rate is 0.51
packets/cycle for the 4 x 6 NoC and 0.72 packets/cycle for the 6 x 8 NoC. On the
other hand, without the flow controller, the effective traffic injection rate continues
to increase even in the presence of congestion. Hence the average packet latency
grows significantly. As it can be clearly seen from Fig. 7.13, the flow controller
improves the average latency especially at larger injection rates.

7.7 Experimental Results 131

6x8 Network

—O— Without the proposed controller
—&— With the proposed controller -

4x6 Network

—©— Without the proposed controller
—&— With the proposed controller

1400
1200

1200

1000

1000 200
800 |- ---
600 -~~~

400 | ----

600

400

2700 1) P S S S 200

Average packet latency (cycle)
Average packet latency (cycle)

A hd L

0 T T L 0t
04 042 044 046 048 05 052 0.5 0.55 0.6 0.65 0.7 0.75
Effective injection rate (packets/cycle) Effective injection rate (packets/cycle)

(a) (b)

Fig. 7.13 Average packet latency as a function of effective traffic injection rate is plotted for
a4 x 6 and b 6 x 8 networks under hotspot traffic pattern

7.7.5 Evaluation with an FPGA Prototype

We also present results directly measured using the FPGA prototype to support the
simulation results. For this purpose, a 4 x 4 Mesh network is implemented with
and without the proposed flow controller. Similar to the simulations, a basic link
level ON/OFF flow control is implemented in both cases, and deterministic XY
routing is employed. The concrete implementation of the flow controller is pre-
sented in Appendix A.S5.

The reduction in the mean and standard deviation of the packet latencies in
the network are similar to those obtained using simulation. Table 7.4 summarizes
measured values for the mean and standard deviation for a wide range of traffic
injection rates. For instance, at 0.016 packets/cycle traffic injection rate, the
average packet latency without the flow controller is found as 32.6 cycles. The
controller reduces the average latency to only 18.2 cycles including the waiting
time in the processing element, as shown in Table 7.4. Even more importantly,
without the flow controller, the standard deviation of packet latencies over
multiple simulations is as large as 17.6 cycles; this is due to the lack of capa-
bility of the link level flow control to regulate number of packets in the network.

Table 7.4 Mean and standard deviation of packet latencies obtained using the FPGA prototype
are shown with and without the proposed controller

Applied traffic (packets/cycle) 0.016 0.031 0.062 0.126

Average latency (cycles) W/o the proposed controller 32.6 46.1 94.8 169.4
With the proposed controller — 18.2 21.2 28.7 459

Reduction (x) 1.8 22 33 3.7

Standard deviation W/o the proposed controller 17.6 18.2 23.6 37.1
of latency (cycles)

With the proposed controller 0.15 8.1 13.2 14.7

Reduction (x) 119 2.3 1.8 2.5

132 7 Analysis and Optimization of Prediction-Based Flow Control in Networks-on-Chip

On the other hand, the standard deviation when using the flow controller is less
than one cycle. Even though this value increases for heavier traffic, we see about
2x improvement over the basic link level controller over a wide range of input
traffic.

7.8 Summary

Effective flow control mechanisms are necessary for efficient utilization of net-
work resources in NoCs. However, neither switch-to-switch, nor end-to-end con-
trol schemes proposed so far for classical networks can satisfy the requirements of
NoCs. On the other hand, the predictive flow control algorithm presented in this
chapter controls the packet injection rate in order to regulate the number of packets
in the network, similar to the end-to-end flow controller. At the same time, our
approach relies only on local information transfer between the neighboring routers.
Therefore, it has a low communication overhead, similar to the switch-to-switch
flow control.

References

1. Adriahantenaina A, Greiner A (2003) Micro-network for SoC: implementation of a 32-Port
SPIN network. In: Proceedings of design, automation and test in Europe conference, March
2003

2. Baydal E, Lopez P, Duato J (2005) A family of mechanisms for congestion control in
wormhole networks. IEEE Trans Parallel Distrib Syst 16(9):772-784

3. Bertsekas D, Gallager R (1992) Data networks. Prentice Hall, Upper Saddle River

4. Chien AA (1998) A cost and speed model for k-ary n-cube wormhole routers. IEEE Trans
Parallel Distrib Syst 9(2):150-162

5. Dally WJ, Towles B (2004) Principles and practices of interconnection networks. Morgan
Kaufmann, San Fransisco

6. Dally WJ (1992) Virtual-channel flow control. IEEE Trans Parallel Distrib Syst 3(2):194-205

7. Dally WJ, Towles B (2001), Route packets, not wires: on-chip interconnection networks. In:
Proceedings of design automation conference, June 2001

8. Duato J, Yalamanchili S, Ni L (2002) Interconnection networks: an engineering approach.
Morgan Kaufmann, San Mateo

9. Gerla M, Kleinrock L (1980) Flow control: a comparative survey. IEEE Trans Commun
28(4):553-574

10. Harmanci M, Escudero N, Leblebici Y, Ienne P (2004) Providing QoS to connection-less
packet-switched NoC by implementing DiffServ functionalities. In: Proceedings of
international symposium on system-on-chip, November 2004

11. Harmanci M, Escudero N, Leblebici Y, Ilenne P (2005) Quantitative modeling and
comparison of communication schemes to guarantee quality-of-service in networks-on-chip.
In: Proceedings of the international symposium on circuits and systems, May 2005

12. Hedetniemi SM, Hedetniemi ST, Liestman AL (1988) A survey of gossiping and
broadcasting in communication networks. Networks 18(4):319-349

13. Hu J, Marculescu R (2005) Energy- and performance-aware mapping for regular NoC
architectures. IEEE Trans Comput Aided Des Integr Circ Syst 24(4):551-562

References 133

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Hyatt C, Agrawal DP (1997) Congestion control in the wormhole-routed torus with clustering
and delayed deflection. In: Proceedings of parallel computing, routing and communication
workshop

Jalabert A, Murali S, Benini L, De Micheli G (2004) XpipesCompiler: a tool for instantiating
application specific networks on chip. In: Proceedings of design, automation and test in
Europe conference, February 2004

Lee HG, Chang N, Ogras UY, Marculescu R (2007) On-chip communication architecture
exploration: a quantitative evaluation of point-to-point, bus and network-on-chip approaches.
ACM Trans Des Autom Electron Syst 12(3):23

Lopez P, Martinez JM, Duato J (1998) DRIL: dynamically reduced message injection
limitation mechanism for wormhole networks. In: Proceedings of international conference
parallel processing, August 1998

Mendel JM (1995) Lessons in estimation theory for signal processing, communications, and
control. Prentice-Hall, Upper Saddle River

Millberg M, Nilsson E, Thid R, Jantsch A (2004) Guaranteed bandwidth using looped
containers in temporally disjoint networks within the Nostrum network on chip. In:
Proceedings of design, automation and test in Europe conference, February 2004

Murali S, Benini L, De Micheli G (2005) Mapping and physical planning of networks on chip
architectures with quality-of-service guarantees. In: Proceedings of Asia and South Pacific
design automation conference, January 2005

Nilsson E, Millberg M, Oberg J, Jantsch A (2003) Load distribution with the proximity
congestion awareness in a network on chip. In: Proceedings of design, automation and test in
Europe conference, March 2003

Paganini F, Doyle J, Low S (2001) Scalable laws for stable network congestion control. In:
Proceedings of IEEE conference on decision and control, December 2001

Park K, Willinger W (eds) (2000) Self-similar network traffic and performance evaluation.
Wiley, New York

Peh L, Dally WJ (2001) A delay model for router micro-architectures. IEEE Micro
21(1):26-34

Pullini A, Angiolini F, Bertozzi D, Benini L (2005) Fault tolerance overhead in network-on-
chip flow control schemes. In: Proceedings of symposium on integrated circuits and system
design, September 2005

Qiu D, Shro BN (2004) A predictive flow control mechanism to provide QoS and efficient
network utilization. IEEE Trans Network 12(1):73-84

Radulescu A et al (2005) An efficient on-chip ni offering guaranteed services, shared-memory
abstraction, and flexible network configuration. IEEE Trans Comput Aided Des Integr Circ
Syst 24(1):4-17

Smai A, Thorelli L (1998) Global reactive congestion control in multicomputer networks. In:
Proceedings of the fifth international conference on high performance computing , December
1998

Thottethodi M, Lebeck AR, Mukherjee SS (2001) Self-tuned congestion control for
multiprocessor networks. In: Proceedings of the 7th international symposium on high-
performance computer architecture, January 2001

Varatkar G, Marculescu R (2004) On-chip traffic modeling and synthesis for MPEG-2 video
applications. IEEE Trans VLSI 12(1):108-119

Zeferino CA, Santo FME, Susin AA (2004) Paris: a parameterizable interconnect switch for
networks-on-chip. In: Proceedings of symposium on integrated circuits and systems design,
September 2004

Chapter 8
Design and Management of VFI
Partitioned Networks-on-Chip

The design of many core systems-on-chip (SoCs) has become increasingly chal-
lenging due to high levels of integration, excessive energy consumption, and clock
distribution problems. To deal with these issues, this chapter considers network-
on-chip (NoC) architectures partitioned into several voltage-frequency islands
(VFIs) and propose a design methodology for runtime energy management. The
proposed approach minimizes the energy consumption subject to performance
constraints. Then, we present efficient techniques for on-the-fly workload moni-
toring and management to ensure that the system can cope with variability in the
workload and various technology-related parameters. Finally, the results and
functional correctness are validated using an FPGA prototype for an NoC with
multiple VFIs.

8.1 Introduction

As recognized by the International Roadmap for Semiconductors, dealing with on-
chip communication and power management problems require a drastic departure
from the classic design methodologies [38]. Besides its advantages in terms of
modularity, design re-use, and performance, the NoC approach offers a matchless
platform for implementing the globally asynchronous, locally synchronous
(GALS) design paradigm [9, 28]; this makes the clock distribution and timing
closure problems more manageable. In addition, a GALS design style fits nicely
with the concept of VFIs, which has been recently introduced for allowing fine-
grain system-level power management.

The use of VFIs in the NoC context is likely to provide better power-perfor-
mance trade-offs than its single voltage, single clock frequency counterpart, while
taking advantage of the natural partitioning and mapping of applications onto the
NoC platform. However, despite the huge potential for energy savings when using
VFIs, the NoC design methodologies considered so far are limited to a single
voltage-clock domain [2, 14, 19, 27]. On the other hand, studies that do consider

U. Y. Ogras and R. Marculescu, Modeling, Analysis and Optimization 135
of Network-on-Chip Communication Architéctures, Lecture Notes

in Electrical Engineering 184, DOL: 10.1007/978-94-007-3958-1_8,

© Springer Science+Business Media New York 2013

136 8 Design and Management of VFI Partitioned Networks-on-Chip

Voltage-Frequency Island (VFI) 1 VFI 2 Refl Utilizatl
Bt Vo) Bty V)
. . G

FIFO Voltage-Frequency
Utilization Controller

-~

VM, +AV, ,+4f)
V3 +AVL f,+Af)

-~

VFI3 (V3 /3 Vi) .

() (b)

Fig. 8.1 A sample 2D mesh network with three VFIs. Communication across different islands is
achieved through mixed clock/mixed voltage FIFOs. The VFI partitioning and static voltage-
frequency assignment approach in Sect. 8.3 generates architectures like in (a). The dynamic
voltage- frequency control approach detailed in Sect. 8.4 provides fine control around these static
values as depicted in (b)

multiple VFIs assume that each module/core in the design belongs to a different
island and different islands are connected by P2P links [12, 31].

This chapter explores the design and optimization of novel NoC architectures
partitioned into multiple VFIs which rely on a GALS communication paradigm. In
such a system, each voltage island can work at its own speed, while the commu-
nication across different voltage islands is achieved through mixed clock/mixed
voltage FIFOs (see Fig. 8.1). This provides the flexibility to scale the frequency and
voltage of various VFIs in order to minimize energy consumption. As a result, the
advantages of both NoC and VFI design styles can be exploited simultaneously.

In this chapter, we first present a design methodology for partitioning a given
NoC architecture into multiple voltage-frequency domains and assigning the
supply and threshold voltages (hence the corresponding clock frequencies) to each
domain such that the fotal energy consumption is minimized under given per-
formance constraints. Since the characteristics of the application running on the
NoCs are subject to run-time workload and parameter variations, we further
develop an online feedback control mechanism that dynamically adjusts the
operating voltage and frequency around the static values.

Regarding the static VFI partitioning and voltage/frequency assignment, the
basic idea is to start with an NoC configuration where each PE belongs to a
separate VFI characterized by given supply and threshold voltages and local clock
speed (i.e., having initially N VFIs, for N PEs). This configuration may achieve the
minimum application energy consumption, but not necessarily minimize the fotal
energy consumption due to the additional overhead incurred by implementing a
large number of VFIs. Indeed, the associated design complexity increases due to
the overhead in implementing the mixed-clock/mixed-voltage FIFOs and voltage
converters required for communication across different VFIs, as well as the power
distribution network needed to cover multiple VFIs. Therefore, the partitioning
technique needs to find two candidate VFIs to merge such that the decrease in the
energy consumption is the largest among all possible merges, while performance
constraints are still met. This process is repeated until a single VFI implementation

8.1 Introduction 137

is obtained. Consequently, for all possible levels of VFI granularities (i.e.,
1,2,...,N VFIs), we can obtain the partitioning and corresponding voltage level
assignments such that the total energy is minimized, subject to given performance
constraints. Finally, among all VFI partitionings determined by this iterative
process, the one providing the minimum energy consumption is selected as being
the solution of the VFI partitioning problem.

With respect to the workload-driven dynamic voltage and frequency scaling, we
propose a feedback control system that performs online fine grain voltage-fre-
quency control around the static values found by the proposed partitioning algo-
rithm. Indeed, the dynamic control of various voltages and frequencies can help
the system adapt to a lower power consumption and, at the same time, meet the
performance requirements. To this end, we use the utilization of the mixed-clock/
mixed-voltage FIFOs at the interface between any two VFlIs, to set the voltage and
frequency values of the associated VFIs.

The remainder of this chapter is organized as follows. Section 8.2 reviews the
related work. Section 8.3 presents the problem formulation and solution to VFI
partitioning and static voltage-frequency assignment. Section 8.4 presents the
workload-driven dynamic voltage and frequency control technique. Experimental
results are included in Sect. 8.5. Section 8.6 discusses possible extensions of the
basic approach. Finally, Sect. 8.7 summarizes the main ideas in this chapter.

8.2 Related Work

GALS-based systems consist of several synchronous IPs that communicate with
each other asynchronously [9, 28]. There have been many efforts to design low
latency asynchronous communication mechanisms between synchronous blocks
[11]. Some of them include two flip-flop synchronizers or asynchronous FIFO [8],
while others consider stoppable clocks [28].

The design style based on multiple VFIs has been proposed in [23] and received
attention also from industry [30, 40]. It fits very well with the GALS design style,
where the synchronous IPs in the design have both different voltages and fre-
quencies. Despite the natural match between the VFI design style and NoC plat-
forms, many existing design methodologies for NoCs are confined to the single
voltage/single frequency domain case [2, 14, 19, 27].

There have been several design efforts to combine the benefits of NoC inter-
connect mechanism with GALS-based design style. For instance, the authors of [3]
present a clockless NoC capable of providing QoS guarantees. An FPGA prototype
of a GALS-based NoC with two synchronous IPs is presented in [35]. A method to
reduce the wire propagation delays in a GALS-based NoC is proposed in [7].
However, these studies assume that each node in the network belongs to a separate
clock domain, which is a costly proposition.

Dynamic voltage-frequency scaling techniques for multiple clock domain
processors have been addressed. in [24, 41] and references therein. The authors of

138 8 Design and Management of VFI Partitioned Networks-on-Chip

[41] propose a technique based on proportional-integral-derivative (PID) con-
troller, which relies on manual tuning of the control gains. Therefore, this
approach may become prohibitive and requires a coordination mechanism when
the number of voltage-clock domains increases [22].

8.3 VFI Partitioning and Static Voltage Assignment
Problems

8.3.1 Basic Assumptions and Methodology Overview

We consider a tile-based implementation laid out as a grid, as shown in Fig. 8.1a.
Each tile contains a processing element (referred to as PE) and a router. We
assume wormhole flow control and XY routing. Communication across different
voltage-frequency islands is achieved through mixed-clock/mixed-voltage FIFOs.

The target application is first scheduled to the target NoC architecture which
consists of several heterogeneous PEs. We assume the earliest deadline first (EDF)
and energy aware scheduling (EAS) to generate both computation and commu-
nication task schedules [18]. As shown in Fig. 8.2, given the target architecture,
the driver application and its schedule, the methodology determines the VFI
partitioning and the supply and threshold voltage assignment to the VFIs. The
voltages are assigned such that the total energy spent in both computation and
communication is minimized, subject to performance constraints that are imposed
by the driver application as deadlines for certain tasks and/or minimum throughput
requirements.

Fig. 8.2 Overview of the K
overall methodology. Off-line . N01C Arcmt:fcmret Application
VFI partitioning and static (topology, routing, etc.)

3
voltage-frequency assignment =
is detailed in Sect. 8.3, while Scheduling g
the on-line feedback control . A
mechanism is explained in g e Rotuiini A NN g
Sect. 8.4 E] VFI Partitioning and 3 2

o : Static Voltage-Frequency : <]
2z 1 i IS
= < : Assignment : £
s 1 * 1 =
7} |
3 ! Interface Design for 1
é v | Voltage-Frequency Islands " Off-line

S SN 27

v

Dynamic Voltage and
Frequency Scaling (DVFS)

On-line

8.3 VFI Partitioning and Static Voltage Assignment Problems 139

The voltage-frequency assignments computed using the approach presented in
this section are static. For the applications with workload variability, the operating
voltage and frequency are further controlled dynamically around these static
values, as described in Sect. 8.4.

8.3.2 Problem Formulation

A. Energy and delay models

The set of tiles in the network is denoted by T = {1,...,N}. The supply and
threshold voltages for tile i € T are given by V; and V};, respectively. Using this
notation, the sum of dynamic and static energy consumptions associated with tile
i € T can be written as:

Ei(V;, Vi) = RiCiV? + TikiVie5) (8.1)

where R; is the number of active cycles, C; stands for the total switched capaci-
tance per cycle, 7T; is the number of idle cycles, k; is a design parameter, and S; is a
technology parameter [5].

We assume that the static component of the communication energy is included
in the second term of Eq. 8.1, since each link and router belongs to a tile in the
network. The dynamic part of the communication energy consumption is found
using the bit energy metric [43] defined as:

Epir = EL/m + EBbir + Esbir (82)

where E;,,, Ep,, and Es,, represent the energy consumed by the link, buffer and
switch fabric, respectively. Assuming the bit energy values are measured at Vpp,
the energy needed to transmit one bit from tile src € T to tile dst € T is found as:

. . N
Epi(sre,dst) =y _(Ev, (i) + Ep,, (i) + Es,, (i)) v (8.3)
iep DD

where P is the set of tiles on the path from tile src to tile dst.

The clock period for each tile i is a function of its supply and threshold voltage,
and it can be expressed as:

K;V;

Ti(Vh V,,-) = m
1 11

(8.4)

where o (we use o = 1.2) is a technology parameter and K; is a design-specific
constant [36]. Thus, the operating frequency of a tile and the VFI j it belongs to, is
determined by the largest cycle time of the comprising tiles, i.e.,

> min 1 8.5
ﬁ—ies,«{r,(vi,v,,-)} ®.5)

140 8 Design and Management of VFI Partitioned Networks-on-Chip

where §; is the set of tiles that belong to VFI j. Finally, we assume each router is
locally synchronous and communicates with its neighbors via mixed-clock/mixed-
voltage FIFOs. As such, we compute the communication latency between tile src
and tile dst, while sending vol(src, dst) bits of data, using:

[vol sre, dst)—‘

W (8.6)

teomm(STC, dSt) Z 7 + tio
l

iep

where W is the channel width and p is the number of cycles it takes to traverse a
single router and the outgoing link. #5, is the latency of the FIFO buffers. We
determined t54, experimentally using the prototype described in Appendix A.6, but
it can be also found using a worst-case delay model. To give a bit of intuition, the
first term of Eq. 8.6 gives the latency for the header flits while passing through the
routers on path P, while the second term represents the serialization latency.

B. The static voltage/speed assignment problem

Assume that the target application consists of a set of tasks G. For each task
t € G, the initial schedule specifies the deadline (d,), start time (st,), the number of
cycles required to execute the task (x;), as well as the tile where the task will run
on. When the network is partitioned into N VFIs, i=1,--- N, (i.e., each tile
belongs to a different island), the static voltage assignment problem can be for-
mulated as follows:

Given an NoC architecture with N tiles, where each tile belongs to a separate
VFI, a communication task graph describing the driver application, and its
schedule,

Assign the supply (V;) and threshold (V};) voltages, such that the total appli-
cation energy consumption is minimized; that is:

min Eypp, = Z Ei(Vi, Vi) + Z Z vol(i, j) Epir(i,]) (8.7)

VieT VieT VjeT

subject to deadline constraints expressed as:
Xt t
7 + tepmm <di —st; VtEG (8.8)
t

where x,/f; is the computation time and #,, . is the communication delay
encountered when task ¢ needs to communicate with a task mapped to a different
tile. The number of cycles required to execute the task x; is given by the schedule
and 17, is computed using Eq. 8.6. The left hand side of Eq. 8.8 gives the sum of
computation and communication times, while the right-hand side gives the amount
of time the task should be completed without violating the schedule.

C. The voltage-frequency island partitioning problem

Even though decoupling the supply and threshold voltages of each tile results in
a system with the finest granularity for voltage/frequency control, the overhead of
designing a large number of islands may undermine the potential for energy
savings. In fact, it may be possible to merge several islands with a negligible

8.3 VFI Partitioning and Static Voltage Assignment Problems 141

increase in application energy consumption. In the extreme case, all tiles can be
conceivably merged into a single VFI. Between the two extreme points, there
exists a myriad of choices with varying energy/cost trade-offs. In order to compare
these choices, we need to quantify the energy overhead of having extra VFIs.
Towards this end, the energy overhead of adding one additional voltage-frequency
island to an already existing design can be written as:

Evrr = EciGen + Eveonv + Emixcikrifo (8.9)

where Ecpeen 1S the energy overhead of generating additional clock signals [15]
and Ey.,,, denotes the energy overhead of voltage conversion [6]. Finally,
Eyixcikrifo 1 the overhead due to the mixed-clock/mixed-voltage FIFOs used in the
interface of VFIs [8].

Besides energy, additional VFIs exhibit area and implementation overheads,
such as routing multiple power distribution networks. There may be also a design
or technology limitation on the maximum number of VFIs. Therefore, the maxi-
mum number of VFI is also taken as a design constraint. Finally, the VFI parti-
tioning problem is formulated as follows:

Given

An NoC architecture;

The scheduling of the driver application across the network;

Maximum number of allowed VFlIs;

Physical implementation constraints (e.g., certain tiles have to operate at a given
voltage level, or a subset of tiles have to belong to the same VFI)

Find the optimum number of VFIs n(n < N), the VFI partitioning; and assign the
supply and threshold voltages to each island,
such that the rotal energy consumption, i.e.,

Erotal = Eapp +

y Evri (i) (8.10)
i=1

is minimized, subject to performance constraints in Eq. 8.8.

8.3.3 Motivational Example

As an example, we analyze the office-automation benchmark [13]. The application
is scheduled on a 2 x 2 network using the EDF discipline, and the proposed
approach is used for the VFI partitioning and static voltage assignment.

When the entire network consists of a single VFI, the supply and threshold
voltages are found to be 1 and 0.15 V, respectively. The corresponding schedule
and these voltage assignments results in 10.5 mJ energy consumption. When
analyzing this design, we observe that one of the tasks has a zero slack available,

_.
~
S}

8 Design and Management of VFI Partitioned Networks-on-Chip

(a) (b)
< 1.5 15 .
g, ! %
1. i = 44
s s
S oS ; 0.5
g i ')
8 Lo e i & ol ' i
L e SO 3‘3 L e (1,22‘/_/4,2 w2 file ‘2-1_]“”,__..2:-=::tj1_3 1,2))
1 tile (1,1) e 1 tile (1,1) /
o

_
(1)
S—

-
w

-
—

7

Supply Voltage (V)

tle (2.1)
< tile (1L1)

Fig. 8.3 Different voltage-frequency island partitionings and corresponding static voltage
assignments for a 2 x 2 network. a Single VFI. b Two VFIs. ¢ Three VFIs

while others have a positive slack. When the network consists of two islands, the
task with a zero slack is decoupled from the others. As shown in Fig. 8.3b, only
one of the tiles needs to operate at 1 V, while the supply voltage of the others is
reduced to 0.8 V. The energy consumption of this solution drops to 7.5 mJ, which
represents about 29 % savings.

The network can be further partitioned into three islands, as shown in Fig. 8.3c.
For this example, a finer partitioning results in a diminishing rate of returns. In
addition, the overhead of the extra island undermines the potential for energy
savings. In this example, the energy consumption of the three- and four-island
networks is 7.6 and 7.8 mlJ, respectively. Hence, the network partitioning shown in
Fig. 8.3b results in a minimum energy consumption.

8.3.4 Partitioning Methodology

We solve the VFI partitioning and static voltage assignment problems simulta-
neously. We start off with a VFI partitioning where all the PEs belong to separate
islands, as shown in the left-most box in Fig. 8.4. Then, we solve the static voltage
assignment problem in Sect. 8.3.2. To solve this nonlinear inequality constrained
problem, i.e., to find the supply and threshold voltages that minimize the total
energy _consumption_subject to_performance constraints, we use the fimincon'

8.3 VFI Partitioning and Static Voltage Assignment Problems 143

For all pairs of

neighboring islands (i ,j)

Merge VFIsiand j

Solve static VF
assignment problem|

i

;Given an initial partitionin
with Nislands, solve static
voltage/frequency) 4

h 4

‘\\assignment problem -
T 7T Pie Compute the
4 Pie energy consumption
RO

_’E e e, i
i min E,, = 2 E,(V,,V,)+ Z 2 vol(i, j)E,, (i, J)) resultinthe minimum energy] ;i configuration |
; VieT Vie TViel [s

t
Comm

i , x
i subject to—-+t
t

< deadline , — start _time ,

Fig. 8.4 Outline of the proposed VFI partitioning and static voltage assignment methodology

function which is available in Matlab. While the configuration where each tiles
belong to separate islands minimizes the application energy consumption, the
large number of VFIs results in a more complex system with a larger energy
overhead; hence a design trade-off.

The number of VFIs, hence system complexity, is decreased by merging some
of the neighboring islands. Merging islands brings a number of additional con-
straints to the problem formulation. For instance, when tiles i and j are merged, the
constraints V; = V; and V; = V;; need to be added and thus, the voltage assignment
problem in Sect. 8.3.2 needs to be solved with these additional constraints. Due to
these additional constraints, the application energy consumption goes up after the
two islands are merged. However, the tofal energy consumption given by Eq. 8.10
may decrease, if the increase in the application energy consumption is smaller than
the reduction in the energy overhead due to merging two VFIs.

In the second step of the algorithm (i.e., the middle box in Fig. 8.4), the decrease
in the total energy consumption as a result of merging each pair of neighboring tiles
is computed. Then, the pair of islands which improves the total energy consumption
the most is picked and merged permanently, as depicted in the right most box in
Fig. 8.4. After the VFI configuration is updated, the second step is executed again to
find the next pair of candidate tiles to merge. This iterative process continues until
all tiles are merged and the network consists of a single island.

In summary, the proposed algorithm starts off with N VFIs and reaches a single
VFI configuration at the end; as such, it evaluates all possible levels of VFI
granularity. If there is no design-specific constraint on the maximum number of
VFIs, then the VFI partitioning that provides the minimum energy is selected. On
the other hand, if there is a constraint, say the maximum number of VFIs is M <N,
then we select the VFI partitioning that provides the minimum energy among M-

! fmincon is a function provided by Matlab that solves constrained nonlinear optimization (or
nonlinear programming).problems._[26].

144 8 Design and Management of VFI Partitioned Networks-on-Chip

VFI, (M — 1)-VFL,. .., 1-VFI solutions, since we cannot have more than M VFIs,
even if this would provide a lower energy consumption.

For a d x d grid with N nodes (i.e. N = d x d) there are 2d(d — 1) pairs of
neighbors. In the worst case, the proposed approach evaluates O(N?) merges of
neighboring islands. In our current implementation, we invoke the nonlinear
problem solver (i.e., fmincon) for each evaluation, and still obtain the solution in
less than 30 min for a 5 x 5 network, as explained in Sect. 8.5.

We also note that one can trade-off accuracy for run-time by employing a
simpler evaluation mechanism. For example, when we merge VFI i(V;, V;) with
VFI j(V;, Vy;), the supply and threshold voltages of the merged VFI can be set as
V = max(V;,V;) and Vy, = min(Vy;, Vy;). This assignment will satisfy the deadline
constraints, but it results in a larger energy consumption compared to solving the
optimization problem rigorously at each step. Nevertheless, it may significantly
reduce the run-time complexity. Finally, the proposed methodology can be used
with other nonlinear problem solvers and approximation algorithms with different
run-time/accuracy trade-offs [29, 34, 37].

8.4 Feedback Control of Voltage and Frequency

The optimization approach presented in the previous section depends on the
nominal values of the parameter known at the design time. At run-time, however,
there may be performance mismatches between different domains due to parameter
and workload variations; e.g., one of the domains may end up working unneces-
sarily fast. Our goal here is to design a feedback control system such that the
voltage and frequency values are dynamically-controlled around the nominal
values to cope with such dynamic workload variations.

Consider an NoC (architecture) with two VFIs, as shown in Fig. 8.6 Suppose
that the arrival rate at the input of ¢, (i.e., Z]) increases due to a workload variation
in VFI 1 (the upper half of Fig. 8.6). In turn, this would result in an increase in the
utilization of g;. If the interface queues (gq; and g, in this case) are controlled
independently, the response of the controller would be to increase the speed of VFI
2 to match the workload imposed by VFI 1. However, this would in turn increase
the arrival rate at the input of ¢»(i.e., 2,) and trigger an increase in the speed of
VFI 1, which causes a positive feedback. Therefore, we develop a state-space
model for the system and propose a feedback controller to set the operating voltage
and frequency of each island, as shown in Fig. 8.5.

8.4.1 State-Space Feedback Control

Changing the operating frequency and transmitting control and feedback infor-
mation over the network requires a non-negligible amount of time [20]. Therefore,

8.4 Feedback Control of Voltage and Frequency 145
Fig. 8.5 Closed loop control " @
of voltage/frequency levels s 8 Vo hi
based on state feedback, g & v v NoCunder
S oltage- » J2 control
where the state reflects the g g frequenc
o 5 & quency :
utilization of the FIFO queues < g controller :
at the VFI boundaries £ 8 Vi S
&
Stat Actual utilizations
ate for interface FIFOs

feedback
(K)

the controller in Fig. 8.5 needs to be activated with a period, denoted as 7, which is
large enough to perform these operations. The utilization of the interface queue i in
the beginning of kth control interval (i.e., [kT, (k 4+ 1)T]) is expressed as g;(k).

For the kth control interval, the operating frequency of VFI i is denoted by f;(k).
We assume that the arrival and service rates inside each control interval are
stationary and proportional to the operating frequency f;(k). So, the average arrival
and service rates for g; in Fig. 8.6 can be expressed as:

A(k) =21 x fi(k), py(k) =py x fo(k)

where A; and [i; are the average arrival and service rates, respectively. Conse-
quently, the dynamics of g; is given by:

Silk — 1)} (8.11)

falk—1)

In general, g; saturates at g1 (k) = 0 and ¢, (k) = B, where B is the depth of the
queue, due to queue finite size. The proposed feedback controller stabilizes the
queue around a target utilization. As such, this equation represents the linearized
dynamics around an operation point.

From a practical standpoint, however, we need to generalize Eq. 8.11 to con-
sider multiple queues. Suppose that our VFI partitioning technique discussed in

a1(6) = (k- 1) + Tl — u,][

Fig. 8.6 Illustration of the

state-space model] for a A = 7:1 0 M = W
network with 2 VFIs and 2 - — | - _
interface queues 0 2 0w

10 01
B, = B, =

B(2,2)=1 = Input of ¢,
is in island 2
B(2,1) =1 = Output of ¢, is in island 1

146 8 Design and Management of VFI Partitioned Networks-on-Chip

Sect. 8.3 results in M VFIs. When there are M islands and S interface queues
between them, the state of the network (i.e., the utilizations of the interface
queues) and the input vector can be defined as:

Q(k) = [Ch(k), Q2(k), B qs(k)]T7 F(k) = [fl (k)7f2(k)a .- '7fM(k)}T
Consequently, the state-space of the collective queue dynamics is given by:
Ok = [Q(k = V)]s, + T[(ABy = MB3) g,y [F(k = D)ly1y (8.12)

where A = diag(21,7,...,%s) and M = diag([i\, i, ..., fis) and the §x M
matrices By and B, define the topology of the VFI configuration. i.e., B; and B,
specify the islands to which the input and output sides of the interface queues are
connected, respectively. For example, B (i,j) = 1 implies that the inpur side of
interface queue i is in island j, as illustrated in Fig. 8.6. Likewise, B,(i,j) = 1
means that the output side of interface queue i is in island j.

When we use state feedback, the frequency input can be expressed as
F(k) = KoQres(k) — KQ(k), where K is the state feedback matrix, Q,.r(k) is the
reference queue utilization and Kj is a gain matrix which ensures that

lim Q(K) = ey (K
Then, the closed loop system can be obtained by rewriting Eq. 8.12 as:
Q(k) = (I —T(ABy —MB)K)Q(k — 1) + T(AB; — MB)KoQyer(k — 1) (8.13)

The state feedback matrix K needs to be selected such that the closed loop system
described by Eq. 8.13 is stable. We also note that average queue utilizations could
also be used as feedback with some manipulations [41]. Utilizing the rich set of
techniques offered by the state-space feedback control theory [32], this can be
achieved by placing the eigenvalues of (I — T(AB; — MB;)K) within the unit
circle.

Finally, we note that pole placement for this closed loop system is possible
when the open loop system described by Eq. 8.12 is controllable. The necessary
conditions for controllability are as follows:

Theorem In the multiple voltage-frequency island system with M islands (i.e., M
independently controllable clocks) described by Eq. 8.12, the utilization of at most
M queues at the interface of VFIs can be controlled and the system is controllable
iff rank(T(ABy, — MB,)) = S.

Proof The proof follows from the analysis of the model in Eq. 8.12. Let T(AB; —
MB,) = B for notational simplicity. Then, the controllability matrix U for this
system is:

U = [B|IB|I*B|. . .|I*"'B]

8.4 Feedback Control of Voltage and Frequency 147

where [is the § x § identity matrix. The rank of U is obviously equal to the rank of
B which is of size § x M:

rank(U) = rank(B) <min(M, S)

We know that the system is controllable iff rank(U) = S [32]. So, the system can
be state controllable only if S <M, i.e., the number of queues under control is less
than or equal to the number of VFIs.

Furthermore, since rank(U) = rank(B), the system is state controllable
iff rank(B) = S. O

According to this result, the number of interface queues that can be controlled is
less than or equal to the number of VFIs, i.e. the number of independent control
inputs. In case there are more interface queues than the number of VFIs, a subset
of queues should be selected such that the second condition is satisfied. As a result,
we dynamically scale the frequency and voltage of the islands based on the uti-
lizations of the controlled queues. This online feedback control strategy adjusts the
static voltage/frequency values found in Sect. 8.3 to dynamic workload variation
and parameter variations which are unknown at the design time.

8.5 Experimental Results

This section illustrates the effectiveness of the proposed VFI partitioning and
dynamic power management methodologies in minimizing the energy consumption
using real benchmarks. The first set of benchmarks is chosen from a public
benchmark suite, while the second consists of a real video application. The energy
related parameters (e.g., energy consumption of a task running on a certain PE) are
derived from the benchmarks, while the technology parameters are taken from [25].

After the proposed algorithm is used to find the supply and threshold voltage for
each VFI, we map them conservatively to the following discrete levels:
Vouppy = {0.4,0.6,0.8,1.01.2 V}, Vy = {0.15,0.20,0.25,0.30,0.35 V}. Then, we
compute the fotal energy consumption using Eq. 8.10. The results reported here-
after are obtained for these discrete levels.

8.5.1 Experiments with Realistic Benchmarks

Consumer, networking, auto-industry and telecom benchmark applications are
collected from E3S suite [13]. These benchmarks are scheduled onto 3 x 3, 3 x 3,
4 x 4 and 5 x 5 mesh networks, respectively using the EAS scheme presented in
[18]. Then, the proposed approach is used for VFI partitioning and static voltage

148 8 Design and Management of VFI Partitioned Networks-on-Chip

assignment. The second column of Table 8.1 (“1-VFI”) shows the minimum
energy consumption when the entire network consists of a single island. The
remaining columns show the energy consumption values obtained for the best
partitioning with two and three islands, respectively. The energy consumption of
the partitioning selected by the algorithm is marked with an asterisk. For the
Consumer benchmark, the minimum energy consumption is obtained when the
network is partitioned into two voltage-frequency islands. With this configuration,
the energy consumption drops from 18.9 to 12.1 mJ, which represents about 36 %
improvement. As shown in Table 8.1, partitioning the network at a finer granu-
larity does not reduce the energy consumption further due to the overhead of
having the extra islands, which is about 1.7 mJ. Similarly, a 2-VFI configuration
achieves the minimum energy for network benchmark. The auto-industry bench-
mark has 1.67 mJ energy consumption with no VFI partitioning. For this case,
partitioning the network into two islands decreases the energy consumption to
0.34 mlJ. Finally, generating more VFIs does not decrease the energy consumption
further. For felecom benchmark, the energy consumption of the partitioning with
the proposed algorithm is 1.5 mJ; this is more than 4 X reduction compared to the
1-VFI case.

For better visualization, we show the supply voltage levels obtained for felecom
benchmark in Fig. 8.7. When there is a single voltage domain, all tiles operate at
1V Vpp and 0.15 V threshold voltage. However, when there are two VFlIs, the
supply voltage of all the tiles except tile (2,3) can be lowered to 0.6 V, while the

(a))

z 15 - % .

£ . <l

:?:- g"h‘flt‘:\: ~ ey i o% | 50
P an = @

]
-]
]
=
]
>
2
e
a
=
w

Fig. 8.7 Different voltage-frequency island partitionings and corresponding static voltage
assignments for benchmark 3 in Table 8.1. a Single VFI. b Two VFI partitioning. ¢ Three VFI
partitioning

8.5 Experimental Results 149

Table 8.1 The reduction in the overall energy consumption obtained as a result of the control
algorithm

Benchmark Network size Total energy consumption (mJ)

1-VFI 2-VFI 3-VFI
Consumer 3x3 18.9 12.1%* 12.2
Network 3x3 12.9 6.6* 6.7
Auto-industry 4 x4 1.67 0.34%* 0.40
Telecom 5x5 6.9 2.6 1.5%

threshold voltages remain at 0.15 V. When we increase the number of VFIs to
three, the tiles voltage on the lower left corner is further reduced to 0.4 V.

The run-time of the algorithm ranges from a few tens of seconds to 30 min for
the benchmarks reported in Table 8.1. In general, the proposed approach does not
guarantee the optimal solution due to the use of a nonlinear problem solver.

8.5.2 Experiments with a Real Video Application

We analyzed a video application consisting of MPEG2/MP3 encoder/decoder pairs
[18]. The application is partitioned into a set of tasks and scheduled onto a 4 x 4
mesh network using the EDF scheme. Then, the proposed algorithm is used to find
the VFI partitioning with minimum energy consumption.

The proposed approach starts with 16 separate VFIs. Then, it proceeds by
merging the islands until a single island is obtained. As shown in Fig. 8.8, the total
energy consumption is improved until we reach two islands. For instance, when we
move from 16 to 15 islands, the increase in the application energy consumption is
negligible. So, the total energy consumption reduces due to the smaller overhead.
Finally, a 2-VFI partitioning where the tasks of the same application reside in

Fig. 8.8 The variation of
total energy consumption as a
function of the number of
voltage-frequency islands

225 ¢+

1.75

Total Energy Consumption (nJ)
=]

L G T T N T
2 4 6 8 10 12 14 16

Number of Islands

150 8 Design and Management of VFI Partitioned Networks-on-Chip

different islands achieves the minimum energy consumption. This resulting par-
titioning results in 40 % improvement compared to the 1-VFI case.

For the benchmarks we consider, two or three VFIs were usually sufficient to
minimize the energy consumption in our experiments. The exact number of VFIs
depends on (1) how much we can gain by further partitioning a network and (2) how
much overhead should we pay to afford the extra overhead. The former is a function
of the application(s) running on the network. For the benchmarks we consider,
partitioning the NoC beyond two-three VFIs did not result in significant energy
savings. However, the proposed approach is general enough to exploit other types
of applications. The latter factor (i.e., (2)), is technology and design dependent. If
the cost of additional VFIs is small, designs with more VFIs can be more beneficial.

8.5.3 Evaluation of the Feedback Control Strategy

In this section, we illustrate the operation of the state-space feedback controller.
The control system is simulated using Simulink~ where the mixed-clock FIFOs (of
depth 16 words) instantiated using the System Generator from tool Xilinx [39] are
used to implement the interface queues. The average utilization of the FIFOs over
a control interval is used as the feedback. For voltage conversion, we used the
model from [6] with 0.9 efficiency and 10 pF load capacitance. Since, the voltage
transitions may take more than 10 ps [21, 42], we conservatively set the control
interval, 7 > 100 ps. This duration is sufficiently large to change the operating
voltage/frequency and exchange feedback and control signals over the network.
We note that these control signals may also have a high priority or use a network
protocol that guarantees the on-time delivery. Furthermore, these signals are sent
very regularly at periodic intervals. So, the time needed for computation and
communication of control signals is not critical.

In order to assess the performance of the feedback controller, we vary the
arrival and service rates of the interface queues around their nominal values. A
deviation from the nominal value implies that the corresponding island operates
faster or slower than its expected speed.

The operation of the proposed feedback controller for the consumer benchmark
(the second row in Table 8.1) is depicted in Fig. 8.9. As shown in Table 8.1, the
optimum energy savings is achieved when this design is partitioned into two
islands. In this example, the traffic flow is from VFI 1 to VFI 2. We computed the
state-feedback matrix K such that the eigenvalues of the closed loop system stay
within the unit circle even when the elements of A and M in Eq. 8.12 vary by
+25% around their nominal values. This means that the average arrival and
service rates of the interface queues can be larger (or smaller) than the nominal
values by as much as 25 % due to dynamic workload variations. During simula-
tions, we added uniformly distributed random variables to each element of A and
M such that 0.752; nominat < 41 < 1.752%; nominar (same for ;).

8.5 Experimental Results 151

Fig. 8.9 The operation of the
state-space feedback
controller in the presence of
random workload variations
(within 25 % of the nominal
value) and bursty read/ write
operations. Each control
interval is 100 ps

Queue Occupancy

0 10 20 30 40 50
Control Intervals

1.4

N

I

Q© 12

>

o

5

S 19

o 1 1

o ! !

LI- 0-8 L L L L

0 10 20 30 40 50
Control Intervals

Fig. 8.10 The response of L L L L

> —5—Queue1 —©—Queue2 —>*— Queue3
the proposed controller when g
the reference queue 8 0 e ——
utilizations are changed §
during the normal operation % 5

3

3

(€] g ; TEE

0 20 40 60 80

Control Intervals

As depicted in Fig. 8.9, the controller successfully stabilizes the interface
queue. We also simulate bursty write and read operations. For example, at the
beginning of the 11th control interval, VFI 1 starts transmitting data in a bursty
manner and saturates the queue. We observe that the controller responds by
slowing f; down, and the utilization settles down to the desired value after a few
control intervals. Likewise, we observe that the controller responds to bursty reads
by increasing f; (see 30th control interval in Fig. 8.9).

In summary, we observe that the controller adapts the operation speed of the
islands smoothly to counteract random workload variations and sudden changes in
the queue utilization. In both cases, the queue utilization and operating frequencies
settle down to their reference points. Finally, we note that the design of the
controller is independent of the target queue utilizations. The target utilizations
can be fixed or adjusted at run-time to obtain a trade-off between power con-
sumption and performance, as shown in Fig. 8.10.

These findings have been validated using an FPGA prototype and found to be
consistent with the real measurements. The details of the prototype and experi-
ments are presented in Appendix A.6.

152 8 Design and Management of VFI Partitioned Networks-on-Chip

8.6 Extensions of Basic Theory

The technique discussed in this chapter enables formal analysis and optimization
of system level dynamic power management by introducing a precise mathemat-
ical system model. This formalism enables theoretical extensions in a number of
interesting ways.

For example, the centralized algorithm described herein can benefit from
exploiting small world effects with a trade-off between controller performance and
implementation cost trade-off [16]. Likewise, it is worthwhile to analyze the
impact of technology driven constraints such as manufacturing process variations,
reliability driven limits on the supply voltage on the performance of DVFS control
for multiple VFI MPSoCs [16]. One can also consider non-stationary workloads
and design optimal controllers under more general workload models [4].

Finally, the control-theoretic formalism for power management can be extended
to also consider thermal management [1, 10, 17, 33, 44] based approaches have
been recently proposed for effective thermal management.

8.7 Summary

In this chapter, we have discussed a methodology for multi-clock, multi-frequency
domain NoC design, and presented an algorithm for voltage-frequency island
partitioning and supply/threshold voltage assignment. We have shown that using
VFIs in the NoC context provides better power-performance trade-offs than its
single voltage, single clock frequency counterpart, while taking advantage of the
natural partitioning and mapping of applications onto the NoC platform. Finally,
we have also shown how this VFI-based architecture can be precisely controlled
for minimizing power dissipation at run-time.

References

1. Arjomand M, Sarbazi-Azad H (2010) Voltage-frequency planning for thermal-aware, low-
power design of regular 3-D NoCs. In: 23rd international conferene on VLSI design

2. Bertozzi D et al (2005) NoC synthesis flow for customized domain specific multiprocessor
systems-on-chip. IEEE Trans Parallel Distrib Syst 16(2):113-129

3. Bjerregaard T, Sparso J (2005) A router architecture for connection-oriented service
guarantees in the MANGO clockless network-on-chip. In: Proceedings of design, automation
and test in Europe conference, March 2005

4. Bogdan P, Marculescu R (2010) Workload characterization and its impact on multicore
platform design. In: Proceedings of the 8th IEEE/ACM/IFIP international conferene on
hardware/software codesign and system synthesis (CODES/ISSS)

5. Butts JA, Sohi GS (2000) A static power model for architects. In: Proceedings of
international symposium of microarchitecture, Dec 2000

References 153

6.

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

Burd TD, Brodersen RW (2000) Design issues for dynamic voltage scaling. In: International
symposium on low power electronics and design

Campobello G, Castano M, Ciofi C, Mangano D (2006) GALS networks on chip: a new
solution for asynchronous delay-insensitive links. In: Proceedings of design, automation and
test in Europe conference, March 2006

. Chelcea T, Nowick SM (2000) A low latency fifo for mixed-clock systems. In: Proceedings

of IEEE computer society workshop on VLSI, April 2000

. Chapiro DM (1984) Globally asynchronous locally synchronous systems. PhD thesis,

Stanford University

Coskun AK et al (2010) Energy-efficient variable-flow liquid cooling in 3D stacked
architectures. In: Proceedings of design automation and test in Europe, pp 1-6

Dasgupta S, Yakovlev A (2007) Comparative analysis of GALS clocking schemes. IET
Comput Digit Tech 1(2):59-69

Dhillon YS, Diril AU, Chatterjee A, Lee HS (2003) Algorithm for achieving minimum energy
consumption in CMOS circuits using multiple supply and threshold voltages at the module
level. In: Proceedings of international conference on computer aided design, Nov 2003
Dick R Embedded system synthesis benchmarks suites (E3S). http://ziyang.eecs.umich.edu/
~ dickrp/e3s/

Dielissen J, Radulescu A, Goossens K, Rijpkema E (2003) Concepts and implementation of
the philips network-on-chip. IP-based SoC design

Duarte DE, Vijaykrishnan N, Irwin MJ (2002) A clock power model to evaluate impact of
architectural and technology optimizations. IEEE Trans Very Large Scale Integr Syst 10(6):
884-855

Garg S, Marculescu D, Marculescu R (2010) Custom feedback control: enabling truly
scalable on-chip power management for MPSoCs. In: Proceedings of the ACM/IEEE
international, symposium on low power electronics and design, Austin, TX

Ge Y, Malani P, Qiu Q (2010) Distributed task migration for thermal management in many-
core systems. In: Design automation conference, Anaheim, June 2010

Hu J, Marculescu R (2005) Communication and task scheduling of application-specific
networks-on-chip. IEE Proc Comput Digit Tech 152(5):643-651

Hu J, Marculescu R (2005) Energy- and performance-aware mapping for regular NoC
architectures. IEEE Trans Comput Aided Des Integr Circuits Syst 24(4):551-562

Intel Corp. Enhanced Intel® SpeedStep® Technology for the Intel® Pentium® M Processor.
http://download.intel.com/design/network/papers/30117401.pdf. Accessed March 2004

Intel architecture. http://www.intel.com/pressroom/kits/core2duo/pdf/microprocessor_
timeline.pdf

Juang P, Wu Q, Peh L, Martonosi M, Clark D (2005) Coordinated, distributed, formal energy
management of chip multiprocessors. In: Proceedings of the ISLPED, Aug 2005

Lackey DE, Zuchowski PS, Bednar TR, Stout DW, Gould SW, Cohn JM (2002) Managing
power and performance for system-on-chip designs using voltage islands. In: Proceedings of
international conference on computer aided design, Nov 2002

Magklis G, Semeraro G, Albonesi DH, Dropsho SG, Dwarkadas S, Scott ML (2003)
Dynamic frequency and voltage scaling for a multiple clock domain microprocessor. IEEE
Micro Special Issue: Top Picks Comput Archit 23(6):62—-68

Martin S, Flautner K, Mudge T, Blaauw D (2002) Combined dynamic voltage scaling and
adaptive body biasing for lower power microprocessors under dynamic workloads. In:
Proceedings of international conference on computer aided design, Nov 2002

Matlab ® Documentation Optimization Toolbox, fmincon. http://www.mathworks.com/
Millberg M, Nilsson E, Thid R, Kumar S, Jantsch A (2004) The Nostrum backbone—a
communication protocol stack for networks on chip. In: Proceedings of VLSI design, Jan
2004

Muttersbach J, Villager T, Fichtner W (2000) Practical design of globally asynchronous
locally synchronous systems. In: Proceedings of international symposium on advanced
research in asynchronous, circuits and. systems, April 2000

http://ziyang.eecs.umich.edu/~dickrp/e3s/
http://ziyang.eecs.umich.edu/~dickrp/e3s/
http://download.intel.com/design/network/papers/30117401.pdf
http://www.intel.com/pressroom/kits/core2duo/pdf/microprocessor_timeline.pdf
http://www.intel.com/pressroom/kits/core2duo/pdf/microprocessor_timeline.pdf
http://www.mathworks.com/

154 8 Design and Management of VFI Partitioned Networks-on-Chip

29. Nash SG, Sofer A (1996) Linear and nonlinear programming. McGraw-Hill, New York

30. National Semiconductor Corporation (2004) Next-generation SoC power management with
multi-domain adaptive voltage scaling. Electronics product design, March 2004

31. Niyogi K, Marculescu D (2005) Speed and voltage selection for GALS systems based on
voltage/frequency islands. In: Proceedings of Asia and South Pacific design automation
conference, Jan 2005

32. Ogata K (1995) Discrete-time control systems. Prentice-Hall, Upper Saddle River

33. Sharifi S et al (2010) Hybrid dynamic energy and thermal management in heterogeneous
embedded multiprocessor SoCs. In: Asia and south pacific design automation conference,
pp 873-878, Jan 2010

34. Rasmussen J (1998) Nonlinear programming by cumulative approximation refinement. Struct
Multidiscip Optim 15(1):1-7

35. Quartana J, Renane S, Baixas A, Fesquet L, Renaudin M (2005) GALS systems prototyping
using multiclock FPGAs and asynchronous network-on-chips. In: Proceedings of
international conference on field programmable logic and applications, Aug 2005

36. Sakurai T, Newton AR (1990) Alpha-power law MOSFET model and its applications to
CMOS inverter delay and other formulas. IEEE J Solid-State Circuits 25(2):584-594

37. Schittkowski K (1986) NLPQL: a fortran subroutine solving constrained nonlinear
programming problems. Ann Oper Res 5(1-4):485-500

38. Semiconductor Association (2006) The international technology roadmap for semiconductors
(ITRS)

39. System Generator®, Xilinx®. http://www xilinx.com/ise/optional _prod/system_generator.htm

40. Toshiba America Electronic Components, Inc. Impact of multiple-voltage domain (Multi-
VDD) design implementation on large, complex SoCs. White paper. http://www.toshiba.com/
taec/adinfo/socworld/images/Pointers_Pitfalls_MultiVDD.pdf

41. Wu Q, Juang P, Martonosi M, Clark DW (2004) Formal online methods for voltage/
frequency control in multiple clock domain microprocessors. In: Proceedings of the
international conference on architectural support for programming languages and operating
systems, Oct 2004

42. Xie F, Martonosi M, Malik S (2004) Intraprogram dynamic voltage scaling: bounding
opportunities with analytic modeling. ACM Trans Archit Code Optim 1(3):323-367

43. Ye T, Benini L, De Micheli G (2002) Analysis of power consumption on switch fabrics in
network routers. In: Proceedings of design automation conference, June 2002

44. Zanini F, Atienza D, De Micheli G (2009) A control theory approach for thermal balancing of
MPSoC. In: Proceedings of the Asia and south pacific design automation conference

http://www.xilinx.com/ise/optional_prod/system_generator.htm
http://www.toshiba.com/taec/adinfo/socworld/images/Pointers_Pitfalls_MultiVDD.pdf
http://www.toshiba.com/taec/adinfo/socworld/images/Pointers_Pitfalls_MultiVDD.pdf

Chapter 9
Conclusion

Continuous technology scaling will soon enable multicore designs with thousands
of communicating IP blocks on a single chip. Successful design of systems at this
scale will depend critically on truly scalable communication architectures. The
promising solution to date is given by the structured communication via the NoC
approach.

In this book, we have discussed a few fundamental issues related to the mod-
eling, analysis and optimization of NoC communication architectures, and pre-
sented novel design methodologies for low-power NoC design. Formal models are
instrumental not only to understand and analyze the behavior of NoCs but also to
design optimal systems. The techniques presented herein, as well as the literature
review, aim at providing a deep understanding of this field and prepare readers for
further research.

ysis and Optimization 155
es, Lecture Notes

-94-007-3958-1_9,

2013

Appendix A
Tools and FPGA Prototypes

This appendix discusses the NoC analysis, optimization and evaluation tools used
while preparing this book. We first present the NoC performance analysis,
architecture optimization and voltage-frequency island synthesis tools. Then, we
present the simulator used to evaluate these tools. Finally, we provide a brief
overview of the NoC prototypes implemented to demonstrate and evaluate our
major contributions.

A.1 NoC Analysis and Optimization Tools

A.1.1 NoC Performance Analysis Tool

The NoC performance analysis tool is coded using C++. The tool uses a simple
command line interface to setup different parameters. These parameters are:

e Network architecture and routing algorithm: The architectures is accepted using
the “architecture-config” format. This format specifies the number of routers,
their interconnection and the routing algorithm. A configuration file can be
generated in two ways. The first way is to generate a configuration file given a
standard mesh network of any size and a standard deterministic routing
algorithm, such as XY routing. We developed a separate utility for this purpose.
The second option is to use our tool for the NoC performance optimization via
long-range link insertion. This format is also supported by the worm_sim
simulator [11] which is used to evaluate the performance of our analysis tool.

e Number of virtual channels

e Depth of the input buffers in the router

e Target application: the tool accepts the application in the “traffic-config”
format. In this format, each line in the input file contains a 3-tuple, which

U. Y. Ogras and R. Marculescu, Modeling, Analysis and Optimization 157
of Network-on-Chip Communication Architéctures, Lecture Notes

in Electrical Engineering 184, DOIL: 10.1007/978-94-007-3958-1,

© Springer Science+Business Media New York 2013

158 Appendix A: Tools and FPGA Prototypes

specifies the source IP, the destination IP and the packet rate from the source to
the destination. This format is also supported by worm_sim simulator [11] and it
can be generated from “APCG format (see Sect. 4.3) via worm-sim.

A.1.2 NoC Architecture Customization via Long-Range Links

The long-range link insertion tool is also developed using C++. This tool accepts
the application description in the same way as the performance analysis tool
described in Appendix A.l.1. In addition to this, the size of the initial mesh
network and the default routing algorithms are taken as command line inputs.
Finally, the tool takes the maximum total length of the long-range links that can be
added to the initial mesh network. The output is an configuration file in the
“architecture-config” format. As mentioned before, this format specifies the
number of routers, their interconnection and the routing algorithm. The output file
can be used for the NoC performance analysis tool and worm_sim simulator for
further evaluation.

A.2 Simulator Support

A.2.1 Worm_sim NoC Simulator

We utilized a cycle-accurate NoC simulator, called worm_sim to evaluate the
techniques presented in this book. Worm_sim was developed from scratch in C++
using a standard template library by Jingcao Hu [11]. The initial version of
worm_sim is capable of simulating mesh and torus topologies under various
routing algorithms. The user controllable performance parameters include channel
buffer size, routing engine delay, crossbar arbitration delay, etc. Worm_sim can
simulate the system under standard traffic patterns, such as uniform, transpose, and
hotspot traffic patterns, as well as application-specific traffic. specified by
application configuration files or traces. Besides reporting average packet
latencies, worm_sim also reports communication energy consumption using the
Ebit model [13] and the Orion power model library [10].

e Besides the standard mesh and torus topologies, the current version accepts
mesh or torus topologies with long-range links. Furthermore, any deterministic
routing algorithm is accepted in the form of a routing table. This enables us to
simulate arbitrary topologies with any deterministic routing.'

! Link insertion is done explicitly using long-range links, while link removal is mimicked by
never using certain links.

http://dx.doi.org/10.1007/978-94-007-3958-1_4
http://dx.doi.org/10.1007/978-94-007-3958-1_4

Appendix A: Tools and FPGA Prototypes 159

e The flow control technique presented in Chap. 7 is implemented in worm_sim.
Besides the average packet latency reported by the initial version, the extended
version more detailed performance reports such as average and maximum
number of packet in the network at a given time, the average delay experience at
each router and the input buffer utilizations.

e We have developed two new mechanisms to generate traffic in worm_sim. First,
we implemented ON-OFF traffic sources presented in Sect. 7.4 in worm_sim.
Besides this, we have developed a tool that generates finite state machines
(FSM) to describe the behavior of each traffic generator. This way, the simulator
can capture the control and data dependencies in the target application and
generate more realistic traffic patterns than random traffic.

A.3 On-Chip Router Prototype

On-chip routers are at the heart of NoC designs. Therefore, we designed an output
buffered on-chip router which is shared across all prototypes developed in this
dissertation. Due to its moderate buffer requirements, our design (whose simplified
block diagram is shown in Fig. A.1) implements wormhole flow control. The
router consists of four pipeline stages; hence, it takes four cycles to route the
header flit. Then, the remaining flits of the packet, which can vary from 1 flit to
255 flits, follow the header in a pipelined fashion. The depth and width of the
output buffers are parameterized. The packets in the network are divided into 16-
bit flits, since the width of the channels is 16 bits. The router supports deterministic
routing, the routing strategy being implemented as a lookup table for flexibility
reasons. Finally, based on the network topology and their location in the network,
the routers may have different number of ports and area, as summarized in
Table A.1.

Fig. A.1 A simplified block Port1
diagram of the on-chip router Output Input
Cont. Cont.
o5 % o 22
22 ¢ a0
; Routing b
a Table a
oo 1 . |EE
2 HE—=%
==
Input Output
Cont. Cont.

Port3

http://dx.doi.org/10.1007/978-94-007-3958-1_7
http://dx.doi.org/10.1007/978-94-007-3958-1_7
http://dx.doi.org/10.1007/978-94-007-3958-1_7
http://dx.doi.org/10.1007/978-94-007-3958-1_7

160 Appendix A: Tools and FPGA Prototypes

Table A.1 Impact of
inserting of long-range links

Number of Device utilization

slices (%)
on area

3-port router 219 1.4
4-port router 304 1.8
5-port router 397 22
6-port router 503 2.8
4 x4 mesh network 6683 29.0
Mesh with long-range links 7152 31.0

Synthesis is done for Xilinx Virtex ™-II XC2V4000 FPGA

The router was implemented using Verilog HDL. Standard FIFOs from Xilinx
IP library are used to implement the output buffers, while the remaining modules
are custom designs. To test the functionality of the routers, a 4 x 4 mesh network
is instantiated. Then, random number generators are attached to each router to
generate random traffic. Finally, the resulting network is simulated using
ModelSim to verify that all the packets reach successfully their destinations.
More details of this prototype can be found in [6, 8].

A.4 NoC with Application-Specific Long-Range Links

To further demonstrate the effectiveness of the long-range link insertion
methodology, we present an FPGA prototype using a Xilinx Virtex M-I
XC2V4000 device. We first connected the on-chip routers to compose a 4 x 4
mesh network using Verilog HDL. After the operation of the network is tested by
hardware simulation performed using ModelSim, application-specific long-range
links for hotspot traffic pattern and various benchmarks from E3S suite [2] are
determined. To implement the network with long-range links, we replaced the
routers used in the original mesh network with 6-port routers whenever necessary,
and inserted the long-range links. This process is accomplished in less than a day
by modifying the top level Verilog module describing the mesh network.
Similarly, the testbench used for the mesh network is reused to test the
functionality of the network with long-range links. Finally, the designs are
synthesized, implemented and downloaded to Xilinx Virtex-II FPGA using Xilinx
ISE Foundation.

Inserting long-range links requires more resources, hence, increases the area of
the design. Therefore, we analyze the size of the individual routers in a 4 x 4
mesh network and its customized version with long-range links under the
constraint of s(/) = 12 (Table A.1). We observe that moving from 3-to-4, 4-to-5,
and 5-to-6 ports increases the slice utilization by 85, 93 and 106 slices,
respectively. Moreover, we observe that the total number of slices used by a4 x 4
network implementing transpose traffic rises about 7.0 %, as summarized in
Table A.1. More details of this prototype can be found in [8].

Appendix A: Tools and FPGA Prototypes 161

Fig. A.2 Comparison of 160
average packet latency for a
4 x 4 mesh network and
mesh network with long-
range links obtained with the
FPGA prototype for transpose
traffic

=¥+ 4x4 Mesh network
= 4x4 Mesh network with Long-range Links

120 _.................:..................

| e e

Average packet latency (cycles)
[==]
(=]

40 i i i
0.01 0.05 0.1 0.15

Total packet injection rate (packet/cycle)

We observe that the improvements in the average message latency and network
throughput measured using the FPGA prototype are consistent with the simulation
results. The latency comparison under transpose traffic is plotted in Fig. A.2, while
further experimental results can be found in [8]. This basically validates our
simulation results and offers a solid basis for the newly proposed approach.

We also performed accurate energy measurements on the FPGA prototype
using the cycle-accurate power measurement tool develop by Lee et al. [5]. The
experiments showed minimal impact on the energy consumption and validated the
theoretical expectations and simulation results in Sect. 6.6 [8].

A.5 Implementation Overhead of Flow-Control Algorithm

In order to accurately evaluate the area overhead, we implemented the proposed
flow control in Verilog HDL and synthesized the design using Synopsys Design
Compiler. The equivalent gate count of the proposed flow controller is found as
1093 gates.

We also integrated the proposed flow controller into an existing router and
developed an FPGA prototype based on a Xilinx XC2V3000 platform. The basic
NoC router without the proposed flow controller is based on the prototype
presented in Appendix A.3. The router implements the basic link-level ON/OFF
flow control. The input buffers of the router have 16 flit depth and 16 bit width.
The router implements wormhole flow control with deterministic table-based
routing.

The router takes four cycles to process the header flit (that is, to receive, make a
routing decision, traverse the crossbar switch and place it to the desired outgoing
link). After that, the remaining flits simply follow the header in a pipelined
fashion. The time it takes to route packets is not affected by the flow controller,

http://dx.doi.org/10.1007/978-94-007-3958-1_6
http://dx.doi.org/10.1007/978-94-007-3958-1_6

162 Appendix A: Tools and FPGA Prototypes

since the computation of the availabilities are performed concurrently with
routing.

The proposed controller takes up 80 slices in the target FPGA; this corresponds
to about 18 % increase in the number of resources used by the router. It is also
important to evaluate the overhead of the router in a real design. For instance, the
overhead of the proposed controller is about 0.8 % for the MPEG-2 encoder
presented in [6]. In general, the overhead of our controller is estimated be about
1 % of the total chip area.

A.6 Validation of VFI-Based NoC via Prototyping

This section presents a FPGA prototype based on Virtex2Pro Xilinx FPGA
platform [9] for NoCs with multiple VFIs, and the dynamic frequency control
architecture.

A.6.1 Design of NoCs with Multiple VFIs

A typical router in an NoC consists of a FIFO and an output controller (OC) for
each port, and an arbiter to channel the traffic between the ports, as depicted in
Fig. A.3. To connect a node in a VFI with another node residing in a different VFI,
all data and control signals need to be converted from one frequency/voltage
domain to another. For this purpose, we implemented mixed-clock/mixed-voltage
interfaces using FIFOs, which are natural candidates for converting the signals
from one VFI to the another, as shown in Fig. A.3.

VFI1 VFI2
L 4 l
=]
=115 e
/ ; FIFO
| FIFD H—=>
Crossbar Crossbar oCH—>
Switch Switch € 1
(o}
=
j \ v ¥

Clock Domain 1 Clock Domain 2

Fig. A.3 Illustration of the interface between two different voltage-frequency domains VFI1 and
VFI2

Appendix A: Tools and FPGA Prototypes 163

To support the simulation results, we implement a GALS-based NoC with a
4 x 4 mesh topology using Verilog HDL. Block RAM-based mixed-clock FIFOs
from the Xilinx library are used in routers to transfer data between different clock
domains. Our design can be partitioned into as many as 16 VFIs. In our
implementation, the signal conversion, both in terms of clock and voltage
domains, occurs at FIFO interfaces. In this particular design, the Delay Locked
Loops (DLLs) from the Xilinx FPGA device are used to generate the individual
clock signals. However, since multiple voltage levels are not readily available for
FPGA platforms, our prototype does not support voltage level conversion.

For experimental purposes, this implementation is configured with 16 islands
and simulated using the auto-industry benchmark from E3S [2]. We first verify
that no packets are lost in the VFI interfaces. After that, we compute the total
energy consumption corresponding to single VFI and 2-VFI implementations, as
shown in Sect. 8.5.1. To compute the energy consumption values, we utilize the
energy characterization of the on-chip routers reported in [6]. The total energy
consumption for single VFI operating at 1V is found as 109 nJ. On the other hand,
the total energy consumption of the 2-VFI partitioning found using the proposed
approach is 21.2 nJ. Hence, we observe about 81 % reduction in the energy
consumption. The energy consumption results obtained using the FPGA prototype
are different from that measured by simulation in Table 8.1 due to the differences
in the target platform and implementation details. Nevertheless, we note that
according to the simulation results, the relative improvement in the energy con-
sumption for the same benchmark is 80 %, which is very close to the result
obtained using the actual prototype.

A.6.2 Dynamic Frequency Control Architecture

The NoC prototype presented in the previous section consists of multiple VFIs
operating at different clock frequencies. However, it does not support dynamic
frequency scaling. The architecture we present in this section illustrates the
dynamic frequency control technique presented in Sect. 8.4.

The dynamic frequency control architecture with three different frequency
islands is depicted in Fig. A.4. Delay Locked Loops (DLLs) available on the
Xilinx FPGA are used to generate four basic clock signals that are not multiples of
each other (see second column in Table A.2). These four clock signals are further
divided by the clock control module to generate the clock signals for the islands by
the clock control module according to the utilization of the interface queues under
control (FIFO 1 and FIFO 2, in Fig. A.4).

The clock control module is activated periodically, once for every control
interval 7. The dynamic frequency scaling algorithm (e.g., the state-space
feedback controller described in Sect. 8.4) is implemented in the clock control
module. Our current implementation is based on PicoBlaze microprocessor [12]
for flexibility reasons. It could be also implemented using dedicated hardware [1].

http://dx.doi.org/10.1007/978-94-007-3958-1_8
http://dx.doi.org/10.1007/978-94-007-3958-1_8
http://dx.doi.org/10.1007/978-94-007-3958-1_8
http://dx.doi.org/10.1007/978-94-007-3958-1_8
http://dx.doi.org/10.1007/978-94-007-3958-1_8
http://dx.doi.org/10.1007/978-94-007-3958-1_8
http://dx.doi.org/10.1007/978-94-007-3958-1_8

164 Appendix A: Tools and FPGA Prototypes

4 basic clocks

Y

Clock Divider

Clock Control
Algorithm ROM

PicoBlaze
Microprocessor

-,
.
.
’

Four basic clocks 1

r Clock Control T Search Frequency
~~~~~ Frequency Table
Sl ROM
clock1 clock2 clock3 <
PE1 PE1 PE1
i MicroBlaze
Microprocessor| [ FIFO 1 ] Microprocessor[ FIFO 2 ] Microprocessor|

Fig. A4 Dynamic frequency control architecture. Clock DLLs generate four basic clocks
(20, 17.5, 15, 12.5 MHz). Theclock control module whose implementation isdepicted on the right
hand side of the figure is capable of deriving 22 distinct clocks from thesebasic clocks, as shown
in Table A.2. Clocks of individual VFIs are selected from these 22 clock frequencies by the clock
control module

Table A.2 The twenty-two output clocks that can be generated by our current FPGA
implementation

Output clocks (MHz)

Basic input clocks (MHz) 20 20 10 5 2.5 1.25 0.625
17.5 17.5 8.75 4.375 2.188 1.094 0.547
15 15 7.5 3.75 1.875 0.938
12.5 12.5 6.25 3.125 1.563 0.781

We also note that only a finite set of different clock frequencies can be derived
from the basic clocks. For example, the current implementation can derive 22
different clock signals using the four basic clock signals, as summarized in
Table A.2. Therefore, the clock control module selects one of these clock fre-
quencies with the help of search frequency and frequency table modules, as
depicted in Fig. A 4.

The dynamic frequency controller depicted in Fig. A.4 utilizes 474 4-input
look-up tables (LUTs) in Xilinx Virtex-II Pro XC2VP30, which implies a small
area overhead. For example, we divided the NoC-based MPEG-2 encoder
presented in [4] into three VFIs and used the proposed control architecture to
control the individual clock frequencies. This increase the device utilization from
16,966 LUTs to 19,161 LUTs resulting in about 13 % overhead. Even when there
are no workload variations, our measurements using the Xpower tool from Xilinx
show that using the 3VFI architecture decreases the power consumption from 277
to 259 mW. Therefore, the proposed architecture is expected to provide significant
savings for multimedia traffic which is typically characterized by large workload
variations. Finally, the current implementation achieves a maximum frequency of



Appendix A: Tools and FPGA Prototypes 165

122 MHz in the target FPGA. As a result, it can be employed as a test bed for
evaluating the effectiveness of DFS (Dynamic Frequency Scaling) algorithms on
FPGA prototypes; this can further help projecting the energy savings when voltage
scaling is also performed on the actual implementation.




Appendix B
Experiments Using the Single-Chip Cloud

Computer (SCC) Platform

With Contributions from Paul Bogdan
and Radu David, Carnegie Mellon University

Single-chip Cloud Computer (SCC) platform which is a research multi-core
platform built by Intel [4]. The chip contains 24 tiles, each with two processing
cores, interconnected by a 4 x 6 mesh NoC. There are six voltage and frequency
islands (VFIs), organized in groups of four tiles. For this platform, voltage can be
adjusted per island, while frequency can be adjusted on each tile individually.

The 48 cores of the SCC platform run a special Linux distribution that uses the
RCCE library for inter-core communication. Each core runs a separate instance, so
this can be regarded as a distributed platform that has separate kernels on each
processor; the interaction between cores is done exclusively through message
passing. Each core is capable of running its own application stored in the system
shared DDR3 memory, while synchronization and communication among the
cores is performed using the RCCE API [7]. It allows programmers to create
barriers for synchronization and communication purposes, to pass messages
among the cores or access the core timer.

To ensure a fast communication among cores, a dedicated memory buffer is
used. Each tile has its own such message passing buffer (MPB), consisting of
16 KB of SRAM, for a total of 384 KB. This address space is memory mapped on
each core and the RCCE functions use it as a message passing interface. Power
management capability is also provided by the RCCE API through functions that
can be used to modify the voltage and frequency of the tiles.

B.1 Driver Application

We employ the Sobel algorithm, a popular an image processing algorithm, which
is at the basis of most video processing approaches [3]. For our implementation,
the application can be organized such that a ‘parent’ core loads a full 1024 x 1024
image from memory, proceeds to analyze it and then sends 16 blocks of data that
contain 256 x 256 pixels, each from the image to the sixteen children cores. This
partitioning offers a convenient workload for 16 cores as shown in Fig. B.1. In

U. Y. Ogras and R. Marculescu, Modeling, Analysis and Optimization 167
of Network-on-Chip Communication Architéctures, Lecture Notes

in Electrical Engineering 184, DOIL: 10.1007/978-94-007-3958-1,

© Springer Science+Business Media New York 2013



168 Appendix B: Experiments Using the Single-Chip Cloud Computer (SCC) Platform

response, the children cores perform edge detection and send the resulting image
to the parent core. Finally, the parent core reassembles the processed image and
writes it back to memory. A description of the application partitioning and the
mapping of the application on the SCC platform is shown in Fig. B.1.

At the finest level of granularity, the Sobel algorithm involves computing a
3 x 3 pixel convolution to get a value for the edge intensity of a pixel. This mask
is applied to the entire image to obtain the edge map, as shown in Fig. B.2.

Significant variation in the communication volume is obtained by identifying
regions of the image where there is not much pixel variation. These areas show no
sign of edges and thus edge detection doesn’t have to be performed. The parent
core performs this check and only sends data for the regions that contain
significant features variation.

Image Processing

Fig. B.1 Mapping of Sobel image processing algorithm on the SCC. Each SCC tile contains two
cores, meaning that the image processing application runs on nine different tiles

Processed
Image
Non-

processed
empty area

Many edges
processed

Fig. B.2 Partitioning and results shown for running the Sobel edge detection algorithm. The idea
of workload variation based on identifying featureless and crowded areas of an image is also
shown




Appendix B: Experiments Using the Single-Chip Cloud Computer (SCC) Platform 169

B.2 Implementation of the Dynamic Power Manager on SCC

To properly monitor the buffer occupancy at run-time an occupancy variable keeps
track of the filling level of the each core MPB, and also measures the time between
two consecutive send and two consecutive receive operations. At the end of the
communication round, the MPB occupancy values are transmitted to the control
core.

Each voltage island contains four tiles or eight processors. The API allows for
only one of the eight cores, called a Power Domain Master, to adjust the voltages
of the island it controls. Our application is running on 17+1 cores that span three
voltage islands, hence three different MPBs are monitored while the application is
running. The queue usage of each MPB is sent to the control core in an
asynchronous fashion, meaning that a polling strategy is also implemented. The
control core checks for new MPB occupancies continuously and also updates the
global timer for the next instance of the control interval. At every control interval,
the controller computes the next frequency level based on the given occupancy
reference, the feedback control matrix and the current MPB occupancies. The
resulting frequencies are then sent back to the three domain master cores which
finally select the closest frequency divider to the resulting frequency.

B.3 Experiments with Intel Single-Chip Cloud
Computer Prototype

We use the MBPs in the tiles of SCC to track the activity level, i.e., as the system
state defined in Eq. 8.12. In other words, the system reacts to the variation in MPB
occupancy and modify the frequency and voltage accordingly. To test this, we
analyzed the output of the application for a particular video frame. The results in
Fig. B.3 clearly show the power dissipation changes which are well correlated
with the variations in buffer occupancy levels. This particular frame shows how

MPB Occupancy

w0 0 80

20
Time {Abstract Units)

20 3 40 50
Time (Abstract Units)

Fig. B.3 Example of the control algorithm behavior (i.e., power and MPB occupancy) while-
running an individual frame. Area a has less features then area b; thus the MPB occupancy varies
differently and the power controller reacts by reducing the frequency and voltage of theislands,
significantly reducing the overall power consumption of the system


http://dx.doi.org/10.1007/978-94-007-3958-1_8

170 Appendix B: Experiments Using the Single-Chip Cloud Computer (SCC) Platform

60 : - r

e it enaly, | Momogeneous ||
SS—W, “|.§4 ‘1\1 _g;:‘;ﬁ::a:?l?‘
540 5 i .
;35“ ; 4
4 Lo
% \,@1 o M J Lok fie
%4 i) 4:3 s"ﬁ Eiﬂ 100 1:[;:

Time (s}

Fig. B.4 Evaluation of the control algorithm on images that generate very different workloads.
As shown, an image with few features (left picture) creates a light workload and the control-
lerkeeps the voltage and frequency at a low level, while an image with many features (right
picture) requires more communication among cores and then the voltage and frequency are
increased

the top region, with fewer features, requires less data to be communicated and thus
smaller values of occupancy are observed, while the bottom region, which requires
all of the pixels to be sent to children cores, generates a higher occupancy values
which determines an increase in the level of power used.

Figure B.4 shows the results from a run of our program on 10 separate frames
with varying complexity. It can be clearly seen how images with fewer features
have a lower power envelope, while more complex images use more power. To
perform an in-depth power and performance test, the program was run for 100
consecutive frames from a movie and power measurements were recorded.
Dynamic power management enabled 38 % power reduction compared to the
static voltage and frequency implementation.

It is important to note that due to limitations in the implementation of the control
algorithm, this particular prototype uses only 8 of the 48 cores, while the rest of the
cores are kept idle and at the lowest frequency and voltage levels. This means that
for an application that would take advantage of more of the 48 cores, even better
results can be obtained since the workload variation will be even higher.

References

1. Choudhary P, Marculescu D (2006) Hardware based frequency/voltage control of voltage
frequency island systems. In: Proceedings of IEEE/ACM international conference on
hardware—software codesign and system synthesis

2. Dick R, Embedded system synthesis benchmarks suites (E3S). http://ziyang.eecs.umich.
edu/ ~ dickrp/e3s/

3. Gonzalez V, Woods R (1992) Digital image processing. Addison Wesley, Reading,
pp 414-428

4. Intel Research, Single-chip Cloud Computer. http://techresearch.intel.com/ProjectDetails.



http://ziyang.eecs.umich.edu/~dickrp/e3s/
http://ziyang.eecs.umich.edu/~dickrp/e3s/
http://techresearch.intel.com/ProjectDetails.aspx?Id=1
http://techresearch.intel.com/ProjectDetails.aspx?Id=1

Appendix B: Experiments Using the Single-Chip Cloud Computer (SCC) Platform 171

5.

6.

11.

12.

13.

Lee HG, Lee K, Choi Y, Chang N (2005) Cycle-accurate energy measurement and
characterization of FPGAs. Analog Integr Circuits Signal Process 42:239-251

Lee HG, Chang N, Ogras UY, Marculescu R (2007) On-chip communication architecture
exploration: A quantitative evaluation of point-to-point, bus and network-on-chip
approaches. ACM Trans Design Autom Electron Syst 12(3)

. Mattson G et al (2008) Programming the Intel 80-core Network-on-a-chip terascale

processor. In: International conference for high performance computing, networking, storage
and analysis

. Ogras UY, Marculescu R, Lee HG, Chang N (2006) Communication architecture

optimization: Making the shortest path shorter in regular networks-on-chip. In:
Proceedings of design, automation and test in Europe conference

. System Generator ®, Xilinx®. http://www .xilinx.com/ise/optional_prod/system_generator.htm
. Wang H, Zhu X, Peh L, Malik S (2002) Orion: a power-performance simulator for

interconnection networks. In: Proceedings of annual international symposium on
microarchitecture

Worm_Sim: a cycle accurate simulator for networks-on-chip. http://www.ece.cmu.edu/ ~ sld/
wiki/doku.php?id=shared:worm_sim

Xilinx PicoBlaze 8-bit embedded microcontroller. http://www .xilinx.com/products/ipcenter/
picoblaze-S3-V2-Pro.htm

Ye T, Benini L, De Micheli G (2002) Analysis of power consumption on switch fabrics in
network routers. In: Proceedings of design automation conference, 2002



http://www.xilinx.com/ise/optional_prod/system_generator.htm
http://www.ece.cmu.edu/~sld/wiki/doku.php?id=shared:worm_sim
http://www.ece.cmu.edu/~sld/wiki/doku.php?id=shared:worm_sim
http://www.xilinx.com/products/ipcenter/picoblaze-S3-V2-Pro.htm
http://www.xilinx.com/products/ipcenter/picoblaze-S3-V2-Pro.htm

Index

A

Algorithms, 11, 13-16, 40, 76, 105-107, 116,
144, 158

Analytical models, 9, 15

Application mapping, 7, 10, 11, 41, 52, 65, 68,
69, 92

Application scheduling, 11

Architecture customization, 158

Average packet latency, 21,22, 50-54, 64-69,
76, 82, 92-99, 113, 124-132, 159, 161

B

Bandwidth, 3, 12, 18, 19, 21-23, 4245, 52,
54, 63, 90, 105, 107

Benchmark, 84, 93, 97-101, 141, 147, 149,
150, 163

C

Clocks, 21, 137, 164

Clustering coefficient, 84, 85

Communication infrastructure, 3, 6, 7, 17,
39, 41

Communication architecture, 1, 3, 4, 5, 18, 33,
34, 61, 111, 155

Communication paradigm, 6, 7, 12, 41, 136

Congestion control, 14, 15, 105, 108

Contention probability, 18, 52

D
Deadlock, 13, 14, 40, 42, 71, 78, 79,
86-88, 108

Design automation, 141
Design methodology, 1, 6, 46, 101, 136
Dynamic power management, 147, 152, 170

E

Energy and power consumption, 1, 2, 5,
10-12, 15-19, 21-23, 34, 36, 37,
135, 136, 138-144, 147-149, 164,

169

F

Fault tolerance, 5, 12, 16, 17, 21, 40, 80, 92,
107

Feedback control, 136, 137, 144-147, 150,
151, 169

Finite buffers, 52

Flow control, 5, 13, 14, 16, 18, 22,41, 52,
105-107, 109, 115, 116, 122,
124-126, 128, 130-132, 138, 159, 161

FPGA, 23, 34, 37, 46, 91, 92, 101, 124, 131,
137, 151, 160-165

FPGA prototyping, 22, 46, 162

Free packet delay, 81, 85

G
Globally asynchronous locally synchronous
(GALS), 1, 15, 21, 135, 137, 163

I
Input/output and data communications, 39

ysis and Optimization 173
es, Lecture Notes
-94-007-3958-1,

2013



174

L

Latency, 3, 5, 11, 12, 14, 15, 17-22,
40-43, 50-54, 63, 64, 66-69, 72, 73,
76, 80, 81, 88, 92, 94-99, 101, 107,
112, 113, 124-131, 137, 140, 159,
161

Low power, 15, 18, 19, 21, 155

M

Mathematical model, 9

Microarchitecture, 13, 16, 60

Mixed FIFO, 136, 140, 141, 150, 162, 163

MPEG-2, 23, 33-35, 37, 109, 110, 162-164

Multicore design, 155

Multimedia applications, 7, 33

Multiprocessor systems-on-chip (MPSoCs),
11, 15, 151

N

Network-on-chip, 1, 2, 34, 39

Network synthesis, 3-5, 20, 41, 42, 157

Network topology, 5, 17, 35, 42, 43, 71, 81,
108, 109, 159

NoC architecture, 2-5, 9, 10, 16, 23, 33-36,
39, 41, 42, 50, 59, 75, 101, 105,
107, 135, 138, 140, 141, 158

NoC design, 3-6, 11, 14, 15, 17, 19, 22,
36, 37,42,43, 46, 69,73, 135, 152,
155, 159

NoC validation, 4, 5, 21

(0]

On-chip communication, 1, 2, 18, 22, 34

ON/OFF traffic model, 110

Optimization, 3, 4, 9, 12, 16, 19, 49-52, 64,
65, 68, 69, 73,76, 81, 82, 84, 99, 135,
143, 144, 153, 155, 157

P

Packet injection rate, 65, 67, 78, 81, 105,
106, 127, 132

Performance analysis, 5, 19, 20, 22, 46,
49-53, 57, 63, 66, 71, 72,157, 158

Performance evaluation, 5, 22, 23, 35

Performance optimization, 157

Phase transition, 77, 82, 93

Index

Poisson process, 53, 111

Poisson traffic, 50

Predictive model, 106, 109, 115
Process variations, 16, 152
Prototyping, 5, 10, 22, 23, 46, 162

Q
Quality of service (QoS), 6, 12, 14, 15, 23,
42, 92, 137

R

Routing, 2,3, 6, 7, 11-13, 16-18, 20, 22,
23, 39-42, 51, 52, 56, 63, 64, 71,
77-80, 83, 85-87, 93, 106, 107, 109,
124, 157-159

Runtime energy management, 11, 15, 16

S

Scalability, 2, 3,9, 17, 20, 23, 33, 36, 37, 94,
130

Service time, 2, 50-52, 54, 56, 59-68

Simulation, 5, 21, 22, 49, 50, 67-72, 81, 82,
93, 96, 100, 124, 125, 132, 150, 160,
161, 163

Small-world networks, 6, 76, 84

Systems-on-chip (SoCs), 1, 2, 16, 20

T

Thermal management, 15, 16, 152

Throughput, 12-15, 17, 19, 23, 35, 40, 42,
51, 52, 64, 65, 66, 70-72, 77, 178,
92-94, 97, 99, 101, 125, 138, 161

Topology synthesis, 18, 20, 42

Traffic, 5, 6, 9-11, 13-15, 19, 20, 22-24,
40, 41, 50-53, 55-57, 63-66, 70-72,
76-85, 88, 90, 93-101, 105-113,
115, 116, 122-131, 150

Traffic modeling, 4, 9, 10, 109, 110

\"

Virtual channels, 57, 58

Voltage-frequency islands, 21, 135, 138,
148-152, 162, 163



	Modeling, Analysis and Optimization of Network-on-Chip Communication 
Architectures
	Preface
	Contents
	Abbreviations
	Abstract
	1 Introduction
	1.1…Network-on-Chip Architectures
	1.2…Advantages of NoC Architectures
	1.3…A Generic NoC Synthesis Flow
	1.4…NoC Design Space and State of the Art
	References

	2 Literature Survey
	2.1…Application Modeling and Optimization for NoC Communication
	2.1.1 Traffic ModelsTraffic Modeling
	2.1.2 Application MappingApplication Mapping
	2.1.3 Application SchedulingApplication Scheduling

	2.2…Communication Paradigm
	2.2.1 Packet Routing
	2.2.2 Switching Techniques
	2.2.3 QoS and Congestion Control
	2.2.4 Power and Thermal Managementthermal management
	2.2.5 Reliability and Fault Tolerance

	2.3…Communication Infrastructure
	2.3.1 Topology Design
	2.3.2 Router Design
	2.3.3 Network Channel Design
	2.3.4 Floorplanning and Layout Design
	2.3.5 Clocking and Power Distribution

	2.4…NoC Evaluation and Validation
	2.4.1 Analysis and Simulation

	2.5…Prototyping, Testing and Verification
	References

	3 Motivational Example: MPEG-2 Encoder Design
	3.1…Overall Approach
	3.2…Evaluation of the NoC Architecture
	3.2.1 Area Evaluation
	3.2.2 Performance Evaluation 
	3.2.3 Energy Consumption Evaluation

	3.3…Overall Comparison
	References

	4 Target NoC Platform
	4.1…Basic Assumptions
	4.1.1 Routingrouting Algorithm
	4.1.2 Switching Technique

	4.2…NoC ArchitectureNoC architecture Modeling
	4.3…Application Modeling
	4.4…Technology Implications on Networks-on-Chip Platforms
	References

	5 NoC Performance Analysis
	5.1…Introduction
	5.2…Related Work
	5.3…Router Modeling for Performance Analysis
	5.3.1 Basic Assumptions and Notations
	5.3.2 Analytical Model of the Router
	5.3.3 Computation of the Contention Matrix

	5.4…Performance Analysis of Router, Shared Bus and Point-to-Point Configurations
	5.4.1 Router with Multiple Virtual Channels
	5.4.2 Performance Models for Shared Bus and Point-to-Point Architectures 
	5.4.3 Analytical Performance Comparisons
	5.4.4 Using Equation 5.5 for Router Design

	5.5…Network Performance Analysis
	5.5.1 Average Buffer Utilization and Packet Latency
	5.5.2 Network Throughput
	5.5.3 Overview of the Performance Analysis Methodology

	5.6…Experimental Results
	5.6.1 Average Packet Latency
	5.6.2 Case Study: Application Mapping
	5.6.3 Network Throughput
	5.6.4 Application to Arbitrary Topologies
	5.6.5 Complexity and Run-Time Analysis

	5.7…Summary
	References

	6 Application-Specific NoC Architecture Customization Using Long-Range Links
	6.1…Introduction
	6.2…Related Work
	6.3…Long-Range Link Insertion Algorithm
	6.3.1 System Model and Basic Assumptions
	6.3.2 Problem Formulation
	6.3.3 Iterative Long-Range Link Insertion Algorithm
	6.3.4 Evaluation of the Critical Traffic Value
	6.3.5 Small-World Properties of Networks Customized Via Long-Range Links

	6.4…Routing with Long-Range Links
	6.5…Implementation of Long-Range Links
	6.5.1 Traditional CMOS Implementation
	6.5.2 Optical Interconnects for Implementing Long-Range Links

	6.6…Energy-Related Considerations
	6.7…Practical Use of Long-Range Links
	6.8…Experimental Evaluation of Long-Range Link Insertion Methodology
	6.8.1 Evaluation Using Synthetic Benchmarks
	6.8.2 Scalability Analysis 
	6.8.3 Comparison with Topologies of Higher Dimensionality
	6.8.4 Experiments Involving Real Traffic
	6.8.5 One Architecture for All

	6.9…Summary
	References

	7 Analysis and Optimization of Prediction-Based Flow Control in Networks-on-Chip
	7.1…Introduction
	7.2…Overall Approach
	7.3…Related Work
	7.4…System and Traffic Source Modeling
	7.4.1 System Model and Basic Assumptions
	7.4.2 Traffic Source Model
	7.4.2.1 A. Experimental Justification for the ON/OFF Traffic Model
	7.4.2.2 B. Characterization for the Distribution of ON/OFF Periods

	7.4.3 Predictive Control of Traffic Sources

	7.5…State Space Modeling of NoC Routers
	7.6…Prediction-Based Flow Controller
	7.6.1 Availability Predictor
	7.6.2 Practical Implementation of the Predictor
	7.6.3 Using Prediction for Network Control
	7.6.4 On the Stability of the Proposed Flow Control Algorithm

	7.7… Experimental Results
	7.7.1 Audio/Video System
	7.7.2 Synthetic Traffic
	7.7.3 Impact of the Local Buffer Size on Performance
	7.7.4 Scalability of the Approach
	7.7.5 Evaluation with an FPGA Prototype

	7.8…Summary
	References

	8 Design and Management of VFI Partitioned Networks-on-Chip
	8.1…Introduction
	8.2…Related Work
	8.3…VFI Partitioning and Static Voltage Assignment Problems
	8.3.1 Basic Assumptions and Methodology Overview
	8.3.2 Problem Formulation
	8.3.3 Motivational Example
	8.3.4 Partitioning Methodology

	8.4…Feedback Control of Voltage and Frequency
	8.4.1 State-Space Feedback Control

	8.5…Experimental Results
	8.5.1 Experiments with Realistic Benchmarks
	8.5.2 Experiments with a Real Video Application
	8.5.3 Evaluation of the Feedback Control Strategy

	8.6…Extensions of Basic Theory
	8.7…Summary
	ReferencesReferences

	9 Conclusion
	Appendix A 
Tools and FPGA Prototypes
	Appendix B Experiments Using the Single-Chip Cloud 
Computer (SCC) Platform
	Index




